Learn more

Refine search


Results (1-50 of 152 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
9216.2-a1 9216.2-a Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 22 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.5046691370.504669137 1.3600465761.360046576 3.882715037 418037849a218903129 -\frac{41803784}{9} a - \frac{21890312}{9} [0 \bigl[0 , 1 -1 , 0 0 , 64a63 64 a - 63 , 292a37] 292 a - 37\bigr] y2=x3x2+(64a63)x+292a37{y}^2={x}^{3}-{x}^{2}+\left(64a-63\right){x}+292a-37
9216.2-a2 9216.2-a Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 22 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.5046691370.504669137 1.3600465761.360046576 3.882715037 418037849a218903129 \frac{41803784}{9} a - \frac{21890312}{9} [0 \bigl[0 , 1 -1 , 0 0 , 64a63 -64 a - 63 , 292a37] -292 a - 37\bigr] y2=x3x2+(64a63)x292a37{y}^2={x}^{3}-{x}^{2}+\left(-64a-63\right){x}-292a-37
9216.2-a3 9216.2-a Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 22 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.5046691370.504669137 1.3600465761.360046576 3.882715037 274719286561a561297046561 -\frac{27471928}{6561} a - \frac{56129704}{6561} [0 \bigl[0 , 1 -1 , 0 0 , 24a+17 24 a + 17 , 12a101] -12 a - 101\bigr] y2=x3x2+(24a+17)x12a101{y}^2={x}^{3}-{x}^{2}+\left(24a+17\right){x}-12a-101
9216.2-a4 9216.2-a Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 22 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.5046691370.504669137 1.3600465761.360046576 3.882715037 274719286561a561297046561 \frac{27471928}{6561} a - \frac{56129704}{6561} [0 \bigl[0 , 1 -1 , 0 0 , 24a+17 -24 a + 17 , 12a101] 12 a - 101\bigr] y2=x3x2+(24a+17)x+12a101{y}^2={x}^{3}-{x}^{2}+\left(-24a+17\right){x}+12a-101
9216.2-a5 9216.2-a Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 22 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.5046691370.504669137 2.7200931522.720093152 3.882715037 12108881a6572881 -\frac{121088}{81} a - \frac{65728}{81} [0 \bigl[0 , 1 -1 , 0 0 , 4a3 -4 a - 3 , 4a1] -4 a - 1\bigr] y2=x3x2+(4a3)x4a1{y}^2={x}^{3}-{x}^{2}+\left(-4a-3\right){x}-4a-1
9216.2-a6 9216.2-a Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 22 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.5046691370.504669137 2.7200931522.720093152 3.882715037 12108881a6572881 \frac{121088}{81} a - \frac{65728}{81} [0 \bigl[0 , 1 -1 , 0 0 , 4a3 4 a - 3 , 4a1] 4 a - 1\bigr] y2=x3x2+(4a3)x+4a1{y}^2={x}^{3}-{x}^{2}+\left(4a-3\right){x}+4a-1
9216.2-b1 9216.2-b Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 2.8332918842.833291884 0.6879719710.687971971 2.756621001 87372281659049 -\frac{873722816}{59049} [0 \bigl[0 , 1 -1 , 0 0 , 159 -159 , 765] -765\bigr] y2=x3x2159x765{y}^2={x}^{3}-{x}^{2}-159{x}-765
9216.2-b2 9216.2-b Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 5.6665837695.666583769 0.3439859850.343985985 2.756621001 25140815936723486784401a19433856996403486784401 -\frac{2514081593672}{3486784401} a - \frac{1943385699640}{3486784401} [0 \bigl[0 , 1 -1 , 0 0 , 220a139 220 a - 139 , 2304a1593] -2304 a - 1593\bigr] y2=x3x2+(220a139)x2304a1593{y}^2={x}^{3}-{x}^{2}+\left(220a-139\right){x}-2304a-1593
9216.2-b3 9216.2-b Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 5.6665837695.666583769 0.3439859850.343985985 2.756621001 25140815936723486784401a19433856996403486784401 \frac{2514081593672}{3486784401} a - \frac{1943385699640}{3486784401} [0 \bigl[0 , 1 -1 , 0 0 , 220a139 -220 a - 139 , 2304a1593] 2304 a - 1593\bigr] y2=x3x2+(220a139)x+2304a1593{y}^2={x}^{3}-{x}^{2}+\left(-220a-139\right){x}+2304a-1593
9216.2-b4 9216.2-b Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.5666583760.566658376 3.4398598563.439859856 2.756621001 649 \frac{64}{9} [0 \bigl[0 , 1 -1 , 0 0 , 1 1 , 3] 3\bigr] y2=x3x2+x+3{y}^2={x}^{3}-{x}^{2}+{x}+3
9216.2-b5 9216.2-b Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.1333167531.133316753 3.4398598563.439859856 2.756621001 851843 \frac{85184}{3} [0 \bigl[0 , 1 -1 , 0 0 , 7 -7 , 5] -5\bigr] y2=x3x27x5{y}^2={x}^{3}-{x}^{2}-7{x}-5
9216.2-b6 9216.2-b Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.1333167531.133316753 1.7199299281.719929928 2.756621001 240047281a+498452081 -\frac{2400472}{81} a + \frac{4984520}{81} [0 \bigl[0 , 1 -1 , 0 0 , 20a+21 20 a + 21 , 16a+71] -16 a + 71\bigr] y2=x3x2+(20a+21)x16a+71{y}^2={x}^{3}-{x}^{2}+\left(20a+21\right){x}-16a+71
9216.2-b7 9216.2-b Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.1333167531.133316753 1.7199299281.719929928 2.756621001 240047281a+498452081 \frac{2400472}{81} a + \frac{4984520}{81} [0 \bigl[0 , 1 -1 , 0 0 , 20a+21 -20 a + 21 , 16a+71] 16 a + 71\bigr] y2=x3x2+(20a+21)x+16a+71{y}^2={x}^{3}-{x}^{2}+\left(-20a+21\right){x}+16a+71
9216.2-b8 9216.2-b Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 5.6665837695.666583769 0.6879719710.687971971 2.756621001 58591911104243 \frac{58591911104}{243} [0 \bigl[0 , 1 -1 , 0 0 , 647 -647 , 6555] 6555\bigr] y2=x3x2647x+6555{y}^2={x}^{3}-{x}^{2}-647{x}+6555
9216.2-c1 9216.2-c Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.9114042670.911404267 1.288920275 1820275681a25308698881 -\frac{18202756}{81} a - \frac{253086988}{81} [0 \bigl[0 , 1 -1 , 0 0 , 44a+213 -44 a + 213 , 832a+455] 832 a + 455\bigr] y2=x3x2+(44a+213)x+832a+455{y}^2={x}^{3}-{x}^{2}+\left(-44a+213\right){x}+832a+455
9216.2-c2 9216.2-c Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.9114042670.911404267 1.288920275 1820275681a25308698881 \frac{18202756}{81} a - \frac{253086988}{81} [0 \bigl[0 , 1 -1 , 0 0 , 44a+213 44 a + 213 , 832a+455] -832 a + 455\bigr] y2=x3x2+(44a+213)x832a+455{y}^2={x}^{3}-{x}^{2}+\left(44a+213\right){x}-832a+455
9216.2-c3 9216.2-c Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 3.6456170693.645617069 1.288920275 37273627a35225627 -\frac{372736}{27} a - \frac{352256}{27} [0 \bigl[0 , 1 -1 , 0 0 , 4a+3 -4 a + 3 , 2a7] 2 a - 7\bigr] y2=x3x2+(4a+3)x+2a7{y}^2={x}^{3}-{x}^{2}+\left(-4a+3\right){x}+2a-7
9216.2-c4 9216.2-c Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 3.6456170693.645617069 1.288920275 37273627a35225627 \frac{372736}{27} a - \frac{352256}{27} [0 \bigl[0 , 1 -1 , 0 0 , 4a+3 4 a + 3 , 2a7] -2 a - 7\bigr] y2=x3x2+(4a+3)x2a7{y}^2={x}^{3}-{x}^{2}+\left(4a+3\right){x}-2a-7
9216.2-c5 9216.2-c Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.8228085341.822808534 1.288920275 855712729a+467888729 -\frac{855712}{729} a + \frac{467888}{729} [0 \bigl[0 , 1 -1 , 0 0 , 4a+13 4 a + 13 , 16a1] -16 a - 1\bigr] y2=x3x2+(4a+13)x16a1{y}^2={x}^{3}-{x}^{2}+\left(4a+13\right){x}-16a-1
9216.2-c6 9216.2-c Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.8228085341.822808534 1.288920275 855712729a+467888729 \frac{855712}{729} a + \frac{467888}{729} [0 \bigl[0 , 1 -1 , 0 0 , 4a+13 -4 a + 13 , 16a1] 16 a - 1\bigr] y2=x3x2+(4a+13)x+16a1{y}^2={x}^{3}-{x}^{2}+\left(-4a+13\right){x}+16a-1
9216.2-c7 9216.2-c Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.9114042670.911404267 1.288920275 715706108531441a+421307996531441 -\frac{715706108}{531441} a + \frac{421307996}{531441} [0 \bigl[0 , 1 -1 , 0 0 , 36a27 36 a - 27 , 96a+87] 96 a + 87\bigr] y2=x3x2+(36a27)x+96a+87{y}^2={x}^{3}-{x}^{2}+\left(36a-27\right){x}+96a+87
9216.2-c8 9216.2-c Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.9114042670.911404267 1.288920275 715706108531441a+421307996531441 \frac{715706108}{531441} a + \frac{421307996}{531441} [0 \bigl[0 , 1 -1 , 0 0 , 36a27 -36 a - 27 , 96a+87] -96 a + 87\bigr] y2=x3x2+(36a27)x96a+87{y}^2={x}^{3}-{x}^{2}+\left(-36a-27\right){x}-96a+87
9216.2-d1 9216.2-d Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.0460503781.046050378 1.8845970821.884597082 2.787957272 1105843a1178880 \frac{110584}{3} a - 1178880 [0 \bigl[0 , 1 -1 , 0 0 , 32a+1 32 a + 1 , 68a85] -68 a - 85\bigr] y2=x3x2+(32a+1)x68a85{y}^2={x}^{3}-{x}^{2}+\left(32a+1\right){x}-68a-85
9216.2-d2 9216.2-d Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.0460503781.046050378 1.8845970821.884597082 2.787957272 186260081a273083281 -\frac{1862600}{81} a - \frac{2730832}{81} [0 \bigl[0 , 1 -1 , 0 0 , 12a+21 12 a + 21 , 24a+39] -24 a + 39\bigr] y2=x3x2+(12a+21)x24a+39{y}^2={x}^{3}-{x}^{2}+\left(12a+21\right){x}-24a+39
9216.2-d3 9216.2-d Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.5230251890.523025189 3.7691941653.769194165 2.787957272 640a+67849 640 a + \frac{6784}{9} [0 \bigl[0 , 1 -1 , 0 0 , 2a+1 2 a + 1 , 2a1] -2 a - 1\bigr] y2=x3x2+(2a+1)x2a1{y}^2={x}^{3}-{x}^{2}+\left(2a+1\right){x}-2a-1
9216.2-d4 9216.2-d Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.0460503781.046050378 3.7691941653.769194165 2.787957272 10940881a+15824081 -\frac{109408}{81} a + \frac{158240}{81} [0 \bigl[0 , 1 -1 , 0 0 , 2a2 -2 a - 2 , 2a+2] 2 a + 2\bigr] y2=x3x2+(2a2)x+2a+2{y}^2={x}^{3}-{x}^{2}+\left(-2a-2\right){x}+2a+2
9216.2-e1 9216.2-e Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.0209761591.020976159 1.443878331 105306568531441a+136151936531441 -\frac{105306568}{531441} a + \frac{136151936}{531441} [0 \bigl[0 , 1 -1 , 0 0 , 4a27 -4 a - 27 , 56a73] 56 a - 73\bigr] y2=x3x2+(4a27)x+56a73{y}^2={x}^{3}-{x}^{2}+\left(-4a-27\right){x}+56a-73
9216.2-e2 9216.2-e Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.0419523192.041952319 1.443878331 1668992729a+3939968729 \frac{1668992}{729} a + \frac{3939968}{729} [0 \bigl[0 , 1 -1 , 0 0 , 6a+13 6 a + 13 , 6a21] 6 a - 21\bigr] y2=x3x2+(6a+13)x+6a21{y}^2={x}^{3}-{x}^{2}+\left(6a+13\right){x}+6a-21
9216.2-e3 9216.2-e Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.0419523192.041952319 1.443878331 246858566561a+515289926561 -\frac{24685856}{6561} a + \frac{51528992}{6561} [0 \bigl[0 , 1 -1 , 0 0 , 4a+16 4 a + 16 , 14a16] 14 a - 16\bigr] y2=x3x2+(4a+16)x+14a16{y}^2={x}^{3}-{x}^{2}+\left(4a+16\right){x}+14a-16
9216.2-e4 9216.2-e Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 1.0209761591.020976159 1.443878331 57629490427a+29264718427 \frac{576294904}{27} a + \frac{292647184}{27} [0 \bigl[0 , 1 -1 , 0 0 , 96a+193 96 a + 193 , 564a1173] 564 a - 1173\bigr] y2=x3x2+(96a+193)x+564a1173{y}^2={x}^{3}-{x}^{2}+\left(96a+193\right){x}+564a-1173
9216.2-f1 9216.2-f Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.0209761591.020976159 1.443878331 105306568531441a+136151936531441 \frac{105306568}{531441} a + \frac{136151936}{531441} [0 \bigl[0 , 1 -1 , 0 0 , 4a27 4 a - 27 , 56a73] -56 a - 73\bigr] y2=x3x2+(4a27)x56a73{y}^2={x}^{3}-{x}^{2}+\left(4a-27\right){x}-56a-73
9216.2-f2 9216.2-f Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.0419523192.041952319 1.443878331 1668992729a+3939968729 -\frac{1668992}{729} a + \frac{3939968}{729} [0 \bigl[0 , 1 -1 , 0 0 , 6a+13 -6 a + 13 , 6a21] -6 a - 21\bigr] y2=x3x2+(6a+13)x6a21{y}^2={x}^{3}-{x}^{2}+\left(-6a+13\right){x}-6a-21
9216.2-f3 9216.2-f Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.0419523192.041952319 1.443878331 246858566561a+515289926561 \frac{24685856}{6561} a + \frac{51528992}{6561} [0 \bigl[0 , 1 -1 , 0 0 , 4a+16 -4 a + 16 , 14a16] -14 a - 16\bigr] y2=x3x2+(4a+16)x14a16{y}^2={x}^{3}-{x}^{2}+\left(-4a+16\right){x}-14a-16
9216.2-f4 9216.2-f Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 1.0209761591.020976159 1.443878331 57629490427a+29264718427 -\frac{576294904}{27} a + \frac{292647184}{27} [0 \bigl[0 , 1 -1 , 0 0 , 96a+193 -96 a + 193 , 564a1173] -564 a - 1173\bigr] y2=x3x2+(96a+193)x564a1173{y}^2={x}^{3}-{x}^{2}+\left(-96a+193\right){x}-564a-1173
9216.2-g1 9216.2-g Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.0460503781.046050378 1.8845970821.884597082 2.787957272 1105843a1178880 -\frac{110584}{3} a - 1178880 [0 \bigl[0 , 1 -1 , 0 0 , 32a+1 -32 a + 1 , 68a85] 68 a - 85\bigr] y2=x3x2+(32a+1)x+68a85{y}^2={x}^{3}-{x}^{2}+\left(-32a+1\right){x}+68a-85
9216.2-g2 9216.2-g Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.0460503781.046050378 1.8845970821.884597082 2.787957272 186260081a273083281 \frac{1862600}{81} a - \frac{2730832}{81} [0 \bigl[0 , 1 -1 , 0 0 , 12a+21 -12 a + 21 , 24a+39] 24 a + 39\bigr] y2=x3x2+(12a+21)x+24a+39{y}^2={x}^{3}-{x}^{2}+\left(-12a+21\right){x}+24a+39
9216.2-g3 9216.2-g Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.5230251890.523025189 3.7691941653.769194165 2.787957272 640a+67849 -640 a + \frac{6784}{9} [0 \bigl[0 , 1 -1 , 0 0 , 2a+1 -2 a + 1 , 2a1] 2 a - 1\bigr] y2=x3x2+(2a+1)x+2a1{y}^2={x}^{3}-{x}^{2}+\left(-2a+1\right){x}+2a-1
9216.2-g4 9216.2-g Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.0460503781.046050378 3.7691941653.769194165 2.787957272 10940881a+15824081 \frac{109408}{81} a + \frac{158240}{81} [0 \bigl[0 , 1 -1 , 0 0 , 2a2 2 a - 2 , 2a+2] -2 a + 2\bigr] y2=x3x2+(2a2)x2a+2{y}^2={x}^{3}-{x}^{2}+\left(2a-2\right){x}-2a+2
9216.2-h1 9216.2-h Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 3.5143668903.514366890 0.5928193800.592819380 2.946351043 1534795775081a3513899750081 -\frac{15347957750}{81} a - \frac{35138997500}{81} [0 \bigl[0 , 1 -1 , 0 0 , 640a+257 -640 a + 257 , 3060a10437] 3060 a - 10437\bigr] y2=x3x2+(640a+257)x+3060a10437{y}^2={x}^{3}-{x}^{2}+\left(-640a+257\right){x}+3060a-10437
9216.2-h2 9216.2-h Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 3.5143668903.514366890 0.5928193800.592819380 2.946351043 1534795775081a3513899750081 \frac{15347957750}{81} a - \frac{35138997500}{81} [0 \bigl[0 , 1 -1 , 0 0 , 640a+257 640 a + 257 , 3060a10437] -3060 a - 10437\bigr] y2=x3x2+(640a+257)x3060a10437{y}^2={x}^{3}-{x}^{2}+\left(640a+257\right){x}-3060a-10437
9216.2-h3 9216.2-h Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.8785917220.878591722 2.3712775222.371277522 2.946351043 800081 -\frac{8000}{81} [0 \bigl[0 , 1 -1 , 0 0 , 3 -3 , 9] -9\bigr] y2=x3x23x9{y}^2={x}^{3}-{x}^{2}-3{x}-9
9216.2-h4 9216.2-h Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 3.5143668903.514366890 0.5928193800.592819380 2.946351043 5699740175043046721a+8775740750043046721 -\frac{56997401750}{43046721} a + \frac{87757407500}{43046721} [0 \bigl[0 , 1 -1 , 0 0 , 80a+97 80 a + 97 , 260a+443] -260 a + 443\bigr] y2=x3x2+(80a+97)x260a+443{y}^2={x}^{3}-{x}^{2}+\left(80a+97\right){x}-260a+443
9216.2-h5 9216.2-h Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 3.5143668903.514366890 0.5928193800.592819380 2.946351043 5699740175043046721a+8775740750043046721 \frac{56997401750}{43046721} a + \frac{87757407500}{43046721} [0 \bigl[0 , 1 -1 , 0 0 , 80a+97 -80 a + 97 , 260a+443] 260 a + 443\bigr] y2=x3x2+(80a+97)x+260a+443{y}^2={x}^{3}-{x}^{2}+\left(-80a+97\right){x}+260a+443
9216.2-h6 9216.2-h Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 1.7571834451.757183445 1.1856387611.185638761 2.946351043 1007380006561a+453650006561 -\frac{100738000}{6561} a + \frac{45365000}{6561} [0 \bigl[0 , 1 -1 , 0 0 , 40a+17 -40 a + 17 , 60a165] 60 a - 165\bigr] y2=x3x2+(40a+17)x+60a165{y}^2={x}^{3}-{x}^{2}+\left(-40a+17\right){x}+60a-165
9216.2-h7 9216.2-h Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 1.7571834451.757183445 1.1856387611.185638761 2.946351043 1007380006561a+453650006561 \frac{100738000}{6561} a + \frac{45365000}{6561} [0 \bigl[0 , 1 -1 , 0 0 , 40a+17 40 a + 17 , 60a165] -60 a - 165\bigr] y2=x3x2+(40a+17)x60a165{y}^2={x}^{3}-{x}^{2}+\left(40a+17\right){x}-60a-165
9216.2-h8 9216.2-h Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.4392958610.439295861 2.3712775222.371277522 2.946351043 27440009 \frac{2744000}{9} [0 \bigl[0 , 1 -1 , 0 0 , 23 -23 , 51] 51\bigr] y2=x3x223x+51{y}^2={x}^{3}-{x}^{2}-23{x}+51
9216.2-i1 9216.2-i Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.8453678480.845367848 3.1551524623.155152462 3.772081557 28200649a11542729 -\frac{2820064}{9} a - \frac{1154272}{9} [0 \bigl[0 , a a , 0 0 , 8a9 8 a - 9 , 17a2] -17 a - 2\bigr] y2=x3+ax2+(8a9)x17a2{y}^2={x}^{3}+a{x}^{2}+\left(8a-9\right){x}-17a-2
9216.2-i2 9216.2-i Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.8453678480.845367848 1.5775762311.577576231 3.772081557 811367281a128070481 \frac{8113672}{81} a - \frac{1280704}{81} [0 \bigl[0 , a a , 0 0 , 12a44 12 a - 44 , 60a+96] -60 a + 96\bigr] y2=x3+ax2+(12a44)x60a+96{y}^2={x}^{3}+a{x}^{2}+\left(12a-44\right){x}-60a+96
9216.2-i3 9216.2-i Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.4226839240.422683924 3.1551524623.155152462 3.772081557 1523281a+10611281 -\frac{15232}{81} a + \frac{106112}{81} [0 \bigl[0 , a a , 0 0 , 2a4 2 a - 4 , 0] 0\bigr] y2=x3+ax2+(2a4)x{y}^2={x}^{3}+a{x}^{2}+\left(2a-4\right){x}
9216.2-i4 9216.2-i Q(2)\Q(\sqrt{-2}) 21032 2^{10} \cdot 3^{2} 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 0.8453678480.845367848 1.5775762311.577576231 3.772081557 19057526561a+143450726561 \frac{1905752}{6561} a + \frac{14345072}{6561} [0 \bigl[0 , a a , 0 0 , 8a+16 -8 a + 16 , 16a+16] 16 a + 16\bigr] y2=x3+ax2+(8a+16)x+16a+16{y}^2={x}^{3}+a{x}^{2}+\left(-8a+16\right){x}+16a+16
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.