Properties

Label 2.0.8.1-9216.2-h3
Base field \(\Q(\sqrt{-2}) \)
Conductor norm \( 9216 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-2}) \)

Generator \(a\), with minimal polynomial \( x^{2} + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 0, 1]))
 
gp: K = nfinit(Polrev([2, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}-{x}^{2}-3{x}-9\)
sage: E = EllipticCurve([K([0,0]),K([-1,0]),K([0,0]),K([-3,0]),K([-9,0])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([-1,0]),Polrev([0,0]),Polrev([-3,0]),Polrev([-9,0])], K);
 
magma: E := EllipticCurve([K![0,0],K![-1,0],K![0,0],K![-3,0],K![-9,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((96)\) = \((a)^{10}\cdot(-a-1)\cdot(a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9216 \) = \(2^{10}\cdot3\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-41472)\) = \((a)^{18}\cdot(-a-1)^{4}\cdot(a-1)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1719926784 \) = \(2^{18}\cdot3^{4}\cdot3^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{8000}{81} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{3}{2} : -\frac{9}{4} a : 1\right)$
Height \(0.87859172260964881669066478027420834471\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(-a - 1 : 0 : 1\right)$ $\left(a - 1 : 0 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.87859172260964881669066478027420834471 \)
Period: \( 2.3712775220707629205649158807102341684 \)
Tamagawa product: \( 16 \)  =  \(2^{2}\cdot2\cdot2\)
Torsion order: \(4\)
Leading coefficient: \( 2.9463510439055691114240122039351697776 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(4\) \(I_{4}^{*}\) Additive \(1\) \(10\) \(18\) \(0\)
\((-a-1)\) \(3\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)
\((a-1)\) \(3\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 9216.2-h consists of curves linked by isogenies of degrees dividing 16.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 768.c2
\(\Q\) 768.b2