Base field \(\Q(\sqrt{-2}) \)
Generator \(a\), with minimal polynomial \( x^{2} + 2 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 0, 1]))
gp: K = nfinit(Polrev([2, 0, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([0,1]),K([1,0]),K([0,0]),K([418,-4360]),K([146930,-97280])])
gp: E = ellinit([Polrev([0,1]),Polrev([1,0]),Polrev([0,0]),Polrev([418,-4360]),Polrev([146930,-97280])], K);
magma: E := EllipticCurve([K![0,1],K![1,0],K![0,0],K![418,-4360],K![146930,-97280]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((204)\) | = | \((a)^{4}\cdot(-a-1)\cdot(a-1)\cdot(-2a+3)\cdot(2a+3)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 41616 \) | = | \(2^{4}\cdot3\cdot3\cdot17\cdot17\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((1788724321920a+1783310266368)\) | = | \((a)^{15}\cdot(-a-1)^{6}\cdot(a-1)^{24}\cdot(-2a+3)^{4}\cdot(2a+3)\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 9579264905789834696884224 \) | = | \(2^{15}\cdot3^{6}\cdot3^{24}\cdot17^{4}\cdot17\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( -\frac{410311536960329978125}{94355189265718404} a - \frac{136155893118005119000}{23588797316429601} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(1\) |
Generator | $\left(-\frac{8176}{361} a - \frac{16127}{722} : -\frac{2080851}{27436} a + \frac{1227905}{13718} : 1\right)$ |
Height | \(6.2931539160546365928133690826298624376\) |
Torsion structure: | \(\Z/2\Z\) |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| |
Torsion generator: | $\left(-16 a - \frac{73}{2} : \frac{73}{4} a - 16 : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 1 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(1\) | ||
Regulator: | \( 6.2931539160546365928133690826298624376 \) | ||
Period: | \( 0.10396698373033479410080824502871436571 \) | ||
Tamagawa product: | \( 16 \) = \(2\cdot2\cdot2\cdot2\cdot1\) | ||
Torsion order: | \(2\) | ||
Leading coefficient: | \( 3.7011679039764952941272628899277629300 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((a)\) | \(2\) | \(2\) | \(I_{7}^{*}\) | Additive | \(1\) | \(4\) | \(15\) | \(3\) |
\((-a-1)\) | \(3\) | \(2\) | \(I_{6}\) | Non-split multiplicative | \(1\) | \(1\) | \(6\) | \(6\) |
\((a-1)\) | \(3\) | \(2\) | \(I_{24}\) | Non-split multiplicative | \(1\) | \(1\) | \(24\) | \(24\) |
\((-2a+3)\) | \(17\) | \(2\) | \(I_{4}\) | Non-split multiplicative | \(1\) | \(1\) | \(4\) | \(4\) |
\((2a+3)\) | \(17\) | \(1\) | \(I_{1}\) | Non-split multiplicative | \(1\) | \(1\) | \(1\) | \(1\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
\(3\) | 3B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 3, 4, 6 and 12.
Its isogeny class
41616.5-e
consists of curves linked by isogenies of
degrees dividing 12.
Base change
This elliptic curve is a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.