Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
41616.5-a1 |
41616.5-a |
$1$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
|
|
$1$ |
\( 1 \) |
$0.282674944$ |
$5.563522048$ |
2.224088822 |
\( -\frac{65536}{51} \) |
\( \bigl[0\) , \( -1\) , \( a\) , \( -1\) , \( 0\bigr] \) |
${y}^2+a{y}={x}^{3}-{x}^{2}-{x}$ |
41616.5-b1 |
41616.5-b |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{10} \cdot 3^{4} \cdot 17^{8} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$2$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{8} \) |
$0.612725906$ |
$0.809400023$ |
5.610924696 |
\( \frac{1285471294}{751689} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( 72\) , \( 36\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+72{x}+36$ |
41616.5-b2 |
41616.5-b |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{8} \cdot 17^{4} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$0.612725906$ |
$1.618800046$ |
5.610924696 |
\( \frac{40873252}{23409} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -18\) , \( 0\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}-18{x}$ |
41616.5-b3 |
41616.5-b |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{10} \cdot 3^{16} \cdot 17^{2} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.612725906$ |
$0.809400023$ |
5.610924696 |
\( \frac{22994537186}{111537} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -188\) , \( -1020\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}-188{x}-1020$ |
41616.5-b4 |
41616.5-b |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{11} \cdot 3^{2} \cdot 17^{10} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$2$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$2.450903625$ |
$0.404700011$ |
5.610924696 |
\( -\frac{1400716334131201}{20927272323} a + \frac{1883759902489320}{6975757441} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -30 a + 792\) , \( 6036 a + 828\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-30a+792\right){x}+6036a+828$ |
41616.5-b5 |
41616.5-b |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{11} \cdot 3^{2} \cdot 17^{10} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$2$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$2.450903625$ |
$0.404700011$ |
5.610924696 |
\( \frac{1400716334131201}{20927272323} a + \frac{1883759902489320}{6975757441} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( 30 a + 792\) , \( -6036 a + 828\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(30a+792\right){x}-6036a+828$ |
41616.5-b6 |
41616.5-b |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{4} \cdot 17^{2} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.612725906$ |
$3.237600092$ |
5.610924696 |
\( \frac{61918288}{153} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -13\) , \( 16\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}-13{x}+16$ |
41616.5-c1 |
41616.5-c |
$1$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{10} \cdot 17^{2} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
|
|
$1$ |
\( 1 \) |
$1$ |
$2.721420930$ |
1.924335194 |
\( -\frac{2249728}{4131} \) |
\( \bigl[0\) , \( -1\) , \( a\) , \( -4\) , \( 9\bigr] \) |
${y}^2+a{y}={x}^{3}-{x}^{2}-4{x}+9$ |
41616.5-d1 |
41616.5-d |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{10} \cdot 3^{8} \cdot 17^{4} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$0.367025030$ |
$1.473245113$ |
6.117523934 |
\( -\frac{31250}{23409} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -2\) , \( -42\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}-2{x}-42$ |
41616.5-d2 |
41616.5-d |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{11} \cdot 3^{10} \cdot 17^{5} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$0.367025030$ |
$0.736622556$ |
6.117523934 |
\( -\frac{5476739736875}{547981281} a + \frac{23093460929000}{547981281} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -110 a + 78\) , \( 40 a - 850\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-110a+78\right){x}+40a-850$ |
41616.5-d3 |
41616.5-d |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{11} \cdot 3^{10} \cdot 17^{5} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$0.367025030$ |
$0.736622556$ |
6.117523934 |
\( \frac{5476739736875}{547981281} a + \frac{23093460929000}{547981281} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( 110 a + 78\) , \( -40 a - 850\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(110a+78\right){x}-40a-850$ |
41616.5-d4 |
41616.5-d |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 17^{2} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.367025030$ |
$2.946490226$ |
6.117523934 |
\( \frac{12194500}{153} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -12\) , \( -18\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}-12{x}-18$ |
41616.5-e1 |
41616.5-e |
$8$ |
$12$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{21} \cdot 3^{10} \cdot 17^{15} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{4} \) |
$18.87946174$ |
$0.034655661$ |
3.701167903 |
\( -\frac{795638018697416056308875}{122322703950862781472} a - \frac{740752568391229768255000}{3822584498464461921} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -34240 a + 89158\) , \( -6490880 a - 8469742\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-34240a+89158\right){x}-6490880a-8469742$ |
41616.5-e2 |
41616.5-e |
$8$ |
$12$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{21} \cdot 3^{10} \cdot 17^{15} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{4} \) |
$18.87946174$ |
$0.034655661$ |
3.701167903 |
\( \frac{795638018697416056308875}{122322703950862781472} a - \frac{740752568391229768255000}{3822584498464461921} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( 34240 a + 89158\) , \( 6490880 a - 8469742\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(34240a+89158\right){x}+6490880a-8469742$ |
41616.5-e3 |
41616.5-e |
$8$ |
$12$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{15} \cdot 3^{30} \cdot 17^{5} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{4} \) |
$6.293153916$ |
$0.103966983$ |
3.701167903 |
\( -\frac{410311536960329978125}{94355189265718404} a - \frac{136155893118005119000}{23588797316429601} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -4360 a + 418\) , \( -97280 a + 146930\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-4360a+418\right){x}-97280a+146930$ |
41616.5-e4 |
41616.5-e |
$8$ |
$12$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{15} \cdot 3^{30} \cdot 17^{5} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{4} \) |
$6.293153916$ |
$0.103966983$ |
3.701167903 |
\( \frac{410311536960329978125}{94355189265718404} a - \frac{136155893118005119000}{23588797316429601} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( 4360 a + 418\) , \( 97280 a + 146930\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(4360a+418\right){x}+97280a+146930$ |
41616.5-e5 |
41616.5-e |
$8$ |
$12$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{18} \cdot 3^{24} \cdot 17^{4} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{6} \) |
$3.146576958$ |
$0.207933967$ |
3.701167903 |
\( -\frac{1107111813625}{1228691592} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -862\) , \( 16498\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}-862{x}+16498$ |
41616.5-e6 |
41616.5-e |
$8$ |
$12$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{30} \cdot 3^{8} \cdot 17^{12} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{6} \) |
$9.439730874$ |
$0.069311322$ |
3.701167903 |
\( \frac{655215969476375}{1001033261568} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( 7238\) , \( -302318\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+7238{x}-302318$ |
41616.5-e7 |
41616.5-e |
$8$ |
$12$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{48} \cdot 3^{4} \cdot 17^{6} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{4} \) |
$4.719865437$ |
$0.138622644$ |
3.701167903 |
\( \frac{46753267515625}{11591221248} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -3002\) , \( -48366\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}-3002{x}-48366$ |
41616.5-e8 |
41616.5-e |
$8$ |
$12$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{24} \cdot 3^{12} \cdot 17^{2} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{4} \) |
$1.573288479$ |
$0.415867934$ |
3.701167903 |
\( \frac{1845026709625}{793152} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -1022\) , \( 12402\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}-1022{x}+12402$ |
41616.5-f1 |
41616.5-f |
$2$ |
$3$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{12} \cdot 3^{2} \cdot 17^{6} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$3$ |
3B |
$1$ |
\( 1 \) |
$3.542758762$ |
$0.839708866$ |
4.207124047 |
\( -\frac{23100424192}{14739} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -237\) , \( -1329\bigr] \) |
${y}^2={x}^{3}-{x}^{2}-237{x}-1329$ |
41616.5-f2 |
41616.5-f |
$2$ |
$3$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{12} \cdot 3^{6} \cdot 17^{2} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$3$ |
3B |
$1$ |
\( 1 \) |
$1.180919587$ |
$2.519126598$ |
4.207124047 |
\( \frac{32768}{459} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( 3\) , \( -9\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+3{x}-9$ |
41616.5-g1 |
41616.5-g |
$8$ |
$16$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{14} \cdot 3^{4} \cdot 17^{16} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{10} \) |
$1.913490884$ |
$0.091877073$ |
3.978034379 |
\( -\frac{491411892194497}{125563633938} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -6576\) , \( -247536\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}-6576{x}-247536$ |
41616.5-g2 |
41616.5-g |
$8$ |
$16$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{13} \cdot 3^{2} \cdot 17^{20} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{8} \) |
$3.826981769$ |
$0.045938536$ |
3.978034379 |
\( -\frac{61437923106397764191713}{291967151254001210886} a - \frac{146204680417750243067160}{48661191875666868481} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( 17220 a - 3696\) , \( -1101912 a - 1018512\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(17220a-3696\right){x}-1101912a-1018512$ |
41616.5-g3 |
41616.5-g |
$8$ |
$16$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{13} \cdot 3^{2} \cdot 17^{20} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{8} \) |
$3.826981769$ |
$0.045938536$ |
3.978034379 |
\( \frac{61437923106397764191713}{291967151254001210886} a - \frac{146204680417750243067160}{48661191875666868481} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -17220 a - 3696\) , \( 1101912 a - 1018512\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-17220a-3696\right){x}+1101912a-1018512$ |
41616.5-g4 |
41616.5-g |
$8$ |
$16$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{16} \cdot 3^{32} \cdot 17^{2} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$4$ |
\( 2^{4} \) |
$0.956745442$ |
$0.183754147$ |
3.978034379 |
\( \frac{1276229915423}{2927177028} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( 904\) , \( -17856\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+904{x}-17856$ |
41616.5-g5 |
41616.5-g |
$8$ |
$16$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{20} \cdot 3^{16} \cdot 17^{4} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1.913490884$ |
$0.367508294$ |
3.978034379 |
\( \frac{163936758817}{30338064} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -456\) , \( -3168\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}-456{x}-3168$ |
41616.5-g6 |
41616.5-g |
$8$ |
$16$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{28} \cdot 3^{8} \cdot 17^{2} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.956745442$ |
$0.735016588$ |
3.978034379 |
\( \frac{4354703137}{352512} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -136\) , \( 544\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}-136{x}+544$ |
41616.5-g7 |
41616.5-g |
$8$ |
$16$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{16} \cdot 3^{8} \cdot 17^{8} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{8} \) |
$3.826981769$ |
$0.183754147$ |
3.978034379 |
\( \frac{576615941610337}{27060804} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -6936\) , \( -223488\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}-6936{x}-223488$ |
41616.5-g8 |
41616.5-g |
$8$ |
$16$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{14} \cdot 3^{4} \cdot 17^{4} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$4$ |
\( 2^{6} \) |
$1.913490884$ |
$0.091877073$ |
3.978034379 |
\( \frac{2361739090258884097}{5202} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -110976\) , \( -14248080\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}-110976{x}-14248080$ |
41616.5-h1 |
41616.5-h |
$1$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{14} \cdot 17^{8} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 5 \) |
$1$ |
$0.401746248$ |
1.420387482 |
\( \frac{13596667005814784}{2263710671811} a + \frac{35649488015527936}{2263710671811} \) |
\( \bigl[0\) , \( a\) , \( a\) , \( 103 a + 468\) , \( -2360 a + 1771\bigr] \) |
${y}^2+a{y}={x}^{3}+a{x}^{2}+\left(103a+468\right){x}-2360a+1771$ |
41616.5-i1 |
41616.5-i |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{17} \cdot 3^{24} \cdot 17^{3} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \cdot 11 \) |
$0.122174971$ |
$0.272698875$ |
4.146324253 |
\( \frac{32297532210782725}{72553009816008} a + \frac{60468973557987577}{18138252454002} \) |
\( \bigl[a\) , \( a - 1\) , \( 0\) , \( -361 a - 544\) , \( 3708 a + 2421\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-361a-544\right){x}+3708a+2421$ |
41616.5-i2 |
41616.5-i |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{22} \cdot 3^{12} \cdot 17^{3} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \cdot 11 \) |
$0.244349942$ |
$0.545397751$ |
4.146324253 |
\( -\frac{2091127194353}{409563864} a + \frac{36587816460805}{1638255456} \) |
\( \bigl[a\) , \( a - 1\) , \( 0\) , \( -121 a - 224\) , \( -1028 a - 811\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-121a-224\right){x}-1028a-811$ |
41616.5-j1 |
41616.5-j |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 17^{3} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1.206897366$ |
$1.522098751$ |
5.195868640 |
\( \frac{4676292608}{23409} a - \frac{28524912640}{23409} \) |
\( \bigl[0\) , \( a\) , \( 0\) , \( -22 a + 62\) , \( -102 a - 129\bigr] \) |
${y}^2={x}^{3}+a{x}^{2}+\left(-22a+62\right){x}-102a-129$ |
41616.5-j2 |
41616.5-j |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{9} \cdot 17^{6} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1.206897366$ |
$0.761049375$ |
5.195868640 |
\( \frac{8951763861508}{547981281} a - \frac{18527853018220}{547981281} \) |
\( \bigl[a\) , \( a - 1\) , \( a\) , \( 51 a + 143\) , \( -396 a + 422\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(51a+143\right){x}-396a+422$ |
41616.5-j3 |
41616.5-j |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{6} \cdot 17^{6} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$2.413794733$ |
$1.522098751$ |
5.195868640 |
\( -\frac{4501995680}{6765201} a + \frac{3926605616}{6765201} \) |
\( \bigl[a\) , \( a - 1\) , \( a\) , \( -4 a + 18\) , \( 18 a + 23\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-4a+18\right){x}+18a+23$ |
41616.5-j4 |
41616.5-j |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{3} \cdot 17^{9} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$4.827589466$ |
$0.761049375$ |
5.195868640 |
\( \frac{101880880164700}{62781816969} a + \frac{119089242546332}{62781816969} \) |
\( \bigl[a\) , \( a - 1\) , \( a\) , \( -19 a - 87\) , \( 120 a + 278\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-19a-87\right){x}+120a+278$ |
41616.5-k1 |
41616.5-k |
$1$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{12} \cdot 3^{10} \cdot 17^{4} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 3 \) |
$1.187019453$ |
$1.082181930$ |
5.449973205 |
\( -\frac{14811123712}{96702579} a + \frac{26737709056}{96702579} \) |
\( \bigl[0\) , \( a\) , \( 0\) , \( -12 a - 18\) , \( -6 a + 102\bigr] \) |
${y}^2={x}^{3}+a{x}^{2}+\left(-12a-18\right){x}-6a+102$ |
41616.5-l1 |
41616.5-l |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{12} \cdot 3^{16} \cdot 17^{4} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1$ |
$0.221570995$ |
1.253394829 |
\( \frac{372082589114986904}{2610969633} a - \frac{181318779827784209}{2610969633} \) |
\( \bigl[a\) , \( a - 1\) , \( a\) , \( -4350 a + 369\) , \( 86669 a - 140167\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-4350a+369\right){x}+86669a-140167$ |
41616.5-l2 |
41616.5-l |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{12} \cdot 3^{8} \cdot 17^{8} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1$ |
$0.443141991$ |
1.253394829 |
\( -\frac{147770521717808}{17596287801} a - \frac{136210703475223}{17596287801} \) |
\( \bigl[a\) , \( a - 1\) , \( a\) , \( -270 a + 29\) , \( 1533 a - 2059\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-270a+29\right){x}+1533a-2059$ |
41616.5-l3 |
41616.5-l |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{12} \cdot 3^{4} \cdot 17^{13} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$4$ |
\( 2^{3} \) |
$1$ |
$0.221570995$ |
1.253394829 |
\( -\frac{1695948356939509768}{15730800405203547} a - \frac{7330062339265374821}{15730800405203547} \) |
\( \bigl[a\) , \( a - 1\) , \( a\) , \( -30 a - 631\) , \( 45 a - 12655\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-30a-631\right){x}+45a-12655$ |
41616.5-l4 |
41616.5-l |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{12} \cdot 3^{4} \cdot 17^{7} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$0.886283983$ |
1.253394829 |
\( \frac{3780522976}{2255067} a + \frac{417620747}{2255067} \) |
\( \bigl[a\) , \( a - 1\) , \( a\) , \( -30 a + 49\) , \( 141 a + 137\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-30a+49\right){x}+141a+137$ |
41616.5-m1 |
41616.5-m |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{17} \cdot 3^{24} \cdot 17^{3} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \cdot 11 \) |
$0.122174971$ |
$0.272698875$ |
4.146324253 |
\( -\frac{32297532210782725}{72553009816008} a + \frac{60468973557987577}{18138252454002} \) |
\( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 361 a - 544\) , \( -3708 a + 2421\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(361a-544\right){x}-3708a+2421$ |
41616.5-m2 |
41616.5-m |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{22} \cdot 3^{12} \cdot 17^{3} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \cdot 11 \) |
$0.244349942$ |
$0.545397751$ |
4.146324253 |
\( \frac{2091127194353}{409563864} a + \frac{36587816460805}{1638255456} \) |
\( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 121 a - 224\) , \( 1028 a - 811\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(121a-224\right){x}+1028a-811$ |
41616.5-n1 |
41616.5-n |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{12} \cdot 3^{16} \cdot 17^{4} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1$ |
$0.221570995$ |
1.253394829 |
\( -\frac{372082589114986904}{2610969633} a - \frac{181318779827784209}{2610969633} \) |
\( \bigl[a\) , \( -a - 1\) , \( a\) , \( 4350 a + 369\) , \( -86669 a - 140167\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(4350a+369\right){x}-86669a-140167$ |
41616.5-n2 |
41616.5-n |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{12} \cdot 3^{8} \cdot 17^{8} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1$ |
$0.443141991$ |
1.253394829 |
\( \frac{147770521717808}{17596287801} a - \frac{136210703475223}{17596287801} \) |
\( \bigl[a\) , \( -a - 1\) , \( a\) , \( 270 a + 29\) , \( -1533 a - 2059\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(270a+29\right){x}-1533a-2059$ |
41616.5-n3 |
41616.5-n |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{12} \cdot 3^{4} \cdot 17^{13} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$4$ |
\( 2^{3} \) |
$1$ |
$0.221570995$ |
1.253394829 |
\( \frac{1695948356939509768}{15730800405203547} a - \frac{7330062339265374821}{15730800405203547} \) |
\( \bigl[a\) , \( -a - 1\) , \( a\) , \( 30 a - 631\) , \( -45 a - 12655\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(30a-631\right){x}-45a-12655$ |
41616.5-n4 |
41616.5-n |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{12} \cdot 3^{4} \cdot 17^{7} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$0.886283983$ |
1.253394829 |
\( -\frac{3780522976}{2255067} a + \frac{417620747}{2255067} \) |
\( \bigl[a\) , \( -a - 1\) , \( a\) , \( 30 a + 49\) , \( -141 a + 137\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(30a+49\right){x}-141a+137$ |
41616.5-o1 |
41616.5-o |
$1$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{12} \cdot 3^{10} \cdot 17^{4} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 3 \) |
$1.187019453$ |
$1.082181930$ |
5.449973205 |
\( \frac{14811123712}{96702579} a + \frac{26737709056}{96702579} \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( 12 a - 18\) , \( 6 a + 102\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(12a-18\right){x}+6a+102$ |
41616.5-p1 |
41616.5-p |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
41616.5 |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 17^{3} \) |
$3.60993$ |
$(a), (-a-1), (a-1), (-2a+3), (2a+3)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1.206897366$ |
$1.522098751$ |
5.195868640 |
\( -\frac{4676292608}{23409} a - \frac{28524912640}{23409} \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( 22 a + 62\) , \( 102 a - 129\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(22a+62\right){x}+102a-129$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.