Learn more

Refine search


Results (1-50 of 82 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
41616.5-a1 41616.5-a \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.282674944$ $5.563522048$ 2.224088822 \( -\frac{65536}{51} \) \( \bigl[0\) , \( -1\) , \( a\) , \( -1\) , \( 0\bigr] \) ${y}^2+a{y}={x}^{3}-{x}^{2}-{x}$
41616.5-b1 41616.5-b \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $2$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $0.612725906$ $0.809400023$ 5.610924696 \( \frac{1285471294}{751689} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 72\) , \( 36\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+72{x}+36$
41616.5-b2 41616.5-b \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.612725906$ $1.618800046$ 5.610924696 \( \frac{40873252}{23409} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -18\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-18{x}$
41616.5-b3 41616.5-b \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.612725906$ $0.809400023$ 5.610924696 \( \frac{22994537186}{111537} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -188\) , \( -1020\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-188{x}-1020$
41616.5-b4 41616.5-b \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $2$ $\Z/4\Z$ $\mathrm{SU}(2)$ $2.450903625$ $0.404700011$ 5.610924696 \( -\frac{1400716334131201}{20927272323} a + \frac{1883759902489320}{6975757441} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -30 a + 792\) , \( 6036 a + 828\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-30a+792\right){x}+6036a+828$
41616.5-b5 41616.5-b \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $2$ $\Z/4\Z$ $\mathrm{SU}(2)$ $2.450903625$ $0.404700011$ 5.610924696 \( \frac{1400716334131201}{20927272323} a + \frac{1883759902489320}{6975757441} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 30 a + 792\) , \( -6036 a + 828\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(30a+792\right){x}-6036a+828$
41616.5-b6 41616.5-b \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.612725906$ $3.237600092$ 5.610924696 \( \frac{61918288}{153} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -13\) , \( 16\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-13{x}+16$
41616.5-c1 41616.5-c \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $2.721420930$ 1.924335194 \( -\frac{2249728}{4131} \) \( \bigl[0\) , \( -1\) , \( a\) , \( -4\) , \( 9\bigr] \) ${y}^2+a{y}={x}^{3}-{x}^{2}-4{x}+9$
41616.5-d1 41616.5-d \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.367025030$ $1.473245113$ 6.117523934 \( -\frac{31250}{23409} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -2\) , \( -42\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-2{x}-42$
41616.5-d2 41616.5-d \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.367025030$ $0.736622556$ 6.117523934 \( -\frac{5476739736875}{547981281} a + \frac{23093460929000}{547981281} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -110 a + 78\) , \( 40 a - 850\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-110a+78\right){x}+40a-850$
41616.5-d3 41616.5-d \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.367025030$ $0.736622556$ 6.117523934 \( \frac{5476739736875}{547981281} a + \frac{23093460929000}{547981281} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 110 a + 78\) , \( -40 a - 850\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(110a+78\right){x}-40a-850$
41616.5-d4 41616.5-d \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.367025030$ $2.946490226$ 6.117523934 \( \frac{12194500}{153} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -12\) , \( -18\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-12{x}-18$
41616.5-e1 41616.5-e \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $18.87946174$ $0.034655661$ 3.701167903 \( -\frac{795638018697416056308875}{122322703950862781472} a - \frac{740752568391229768255000}{3822584498464461921} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -34240 a + 89158\) , \( -6490880 a - 8469742\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-34240a+89158\right){x}-6490880a-8469742$
41616.5-e2 41616.5-e \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $18.87946174$ $0.034655661$ 3.701167903 \( \frac{795638018697416056308875}{122322703950862781472} a - \frac{740752568391229768255000}{3822584498464461921} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 34240 a + 89158\) , \( 6490880 a - 8469742\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(34240a+89158\right){x}+6490880a-8469742$
41616.5-e3 41616.5-e \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $6.293153916$ $0.103966983$ 3.701167903 \( -\frac{410311536960329978125}{94355189265718404} a - \frac{136155893118005119000}{23588797316429601} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -4360 a + 418\) , \( -97280 a + 146930\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-4360a+418\right){x}-97280a+146930$
41616.5-e4 41616.5-e \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $6.293153916$ $0.103966983$ 3.701167903 \( \frac{410311536960329978125}{94355189265718404} a - \frac{136155893118005119000}{23588797316429601} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 4360 a + 418\) , \( 97280 a + 146930\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(4360a+418\right){x}+97280a+146930$
41616.5-e5 41616.5-e \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $3.146576958$ $0.207933967$ 3.701167903 \( -\frac{1107111813625}{1228691592} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -862\) , \( 16498\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-862{x}+16498$
41616.5-e6 41616.5-e \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $9.439730874$ $0.069311322$ 3.701167903 \( \frac{655215969476375}{1001033261568} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 7238\) , \( -302318\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+7238{x}-302318$
41616.5-e7 41616.5-e \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.719865437$ $0.138622644$ 3.701167903 \( \frac{46753267515625}{11591221248} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -3002\) , \( -48366\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-3002{x}-48366$
41616.5-e8 41616.5-e \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.573288479$ $0.415867934$ 3.701167903 \( \frac{1845026709625}{793152} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -1022\) , \( 12402\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-1022{x}+12402$
41616.5-f1 41616.5-f \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $3.542758762$ $0.839708866$ 4.207124047 \( -\frac{23100424192}{14739} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -237\) , \( -1329\bigr] \) ${y}^2={x}^{3}-{x}^{2}-237{x}-1329$
41616.5-f2 41616.5-f \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.180919587$ $2.519126598$ 4.207124047 \( \frac{32768}{459} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 3\) , \( -9\bigr] \) ${y}^2={x}^{3}-{x}^{2}+3{x}-9$
41616.5-g1 41616.5-g \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1.913490884$ $0.091877073$ 3.978034379 \( -\frac{491411892194497}{125563633938} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -6576\) , \( -247536\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-6576{x}-247536$
41616.5-g2 41616.5-g \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $3.826981769$ $0.045938536$ 3.978034379 \( -\frac{61437923106397764191713}{291967151254001210886} a - \frac{146204680417750243067160}{48661191875666868481} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 17220 a - 3696\) , \( -1101912 a - 1018512\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(17220a-3696\right){x}-1101912a-1018512$
41616.5-g3 41616.5-g \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $3.826981769$ $0.045938536$ 3.978034379 \( \frac{61437923106397764191713}{291967151254001210886} a - \frac{146204680417750243067160}{48661191875666868481} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -17220 a - 3696\) , \( 1101912 a - 1018512\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-17220a-3696\right){x}+1101912a-1018512$
41616.5-g4 41616.5-g \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.956745442$ $0.183754147$ 3.978034379 \( \frac{1276229915423}{2927177028} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 904\) , \( -17856\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+904{x}-17856$
41616.5-g5 41616.5-g \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.913490884$ $0.367508294$ 3.978034379 \( \frac{163936758817}{30338064} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -456\) , \( -3168\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-456{x}-3168$
41616.5-g6 41616.5-g \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.956745442$ $0.735016588$ 3.978034379 \( \frac{4354703137}{352512} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -136\) , \( 544\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-136{x}+544$
41616.5-g7 41616.5-g \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $3.826981769$ $0.183754147$ 3.978034379 \( \frac{576615941610337}{27060804} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -6936\) , \( -223488\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-6936{x}-223488$
41616.5-g8 41616.5-g \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.913490884$ $0.091877073$ 3.978034379 \( \frac{2361739090258884097}{5202} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -110976\) , \( -14248080\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-110976{x}-14248080$
41616.5-h1 41616.5-h \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.401746248$ 1.420387482 \( \frac{13596667005814784}{2263710671811} a + \frac{35649488015527936}{2263710671811} \) \( \bigl[0\) , \( a\) , \( a\) , \( 103 a + 468\) , \( -2360 a + 1771\bigr] \) ${y}^2+a{y}={x}^{3}+a{x}^{2}+\left(103a+468\right){x}-2360a+1771$
41616.5-i1 41616.5-i \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.122174971$ $0.272698875$ 4.146324253 \( \frac{32297532210782725}{72553009816008} a + \frac{60468973557987577}{18138252454002} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( -361 a - 544\) , \( 3708 a + 2421\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-361a-544\right){x}+3708a+2421$
41616.5-i2 41616.5-i \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.244349942$ $0.545397751$ 4.146324253 \( -\frac{2091127194353}{409563864} a + \frac{36587816460805}{1638255456} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( -121 a - 224\) , \( -1028 a - 811\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-121a-224\right){x}-1028a-811$
41616.5-j1 41616.5-j \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.206897366$ $1.522098751$ 5.195868640 \( \frac{4676292608}{23409} a - \frac{28524912640}{23409} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -22 a + 62\) , \( -102 a - 129\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-22a+62\right){x}-102a-129$
41616.5-j2 41616.5-j \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.206897366$ $0.761049375$ 5.195868640 \( \frac{8951763861508}{547981281} a - \frac{18527853018220}{547981281} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( 51 a + 143\) , \( -396 a + 422\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(51a+143\right){x}-396a+422$
41616.5-j3 41616.5-j \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.413794733$ $1.522098751$ 5.195868640 \( -\frac{4501995680}{6765201} a + \frac{3926605616}{6765201} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( -4 a + 18\) , \( 18 a + 23\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-4a+18\right){x}+18a+23$
41616.5-j4 41616.5-j \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.827589466$ $0.761049375$ 5.195868640 \( \frac{101880880164700}{62781816969} a + \frac{119089242546332}{62781816969} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( -19 a - 87\) , \( 120 a + 278\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-19a-87\right){x}+120a+278$
41616.5-k1 41616.5-k \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.187019453$ $1.082181930$ 5.449973205 \( -\frac{14811123712}{96702579} a + \frac{26737709056}{96702579} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -12 a - 18\) , \( -6 a + 102\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-12a-18\right){x}-6a+102$
41616.5-l1 41616.5-l \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.221570995$ 1.253394829 \( \frac{372082589114986904}{2610969633} a - \frac{181318779827784209}{2610969633} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( -4350 a + 369\) , \( 86669 a - 140167\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-4350a+369\right){x}+86669a-140167$
41616.5-l2 41616.5-l \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.443141991$ 1.253394829 \( -\frac{147770521717808}{17596287801} a - \frac{136210703475223}{17596287801} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( -270 a + 29\) , \( 1533 a - 2059\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-270a+29\right){x}+1533a-2059$
41616.5-l3 41616.5-l \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.221570995$ 1.253394829 \( -\frac{1695948356939509768}{15730800405203547} a - \frac{7330062339265374821}{15730800405203547} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( -30 a - 631\) , \( 45 a - 12655\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-30a-631\right){x}+45a-12655$
41616.5-l4 41616.5-l \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.886283983$ 1.253394829 \( \frac{3780522976}{2255067} a + \frac{417620747}{2255067} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( -30 a + 49\) , \( 141 a + 137\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-30a+49\right){x}+141a+137$
41616.5-m1 41616.5-m \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.122174971$ $0.272698875$ 4.146324253 \( -\frac{32297532210782725}{72553009816008} a + \frac{60468973557987577}{18138252454002} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 361 a - 544\) , \( -3708 a + 2421\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(361a-544\right){x}-3708a+2421$
41616.5-m2 41616.5-m \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.244349942$ $0.545397751$ 4.146324253 \( \frac{2091127194353}{409563864} a + \frac{36587816460805}{1638255456} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 121 a - 224\) , \( 1028 a - 811\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(121a-224\right){x}+1028a-811$
41616.5-n1 41616.5-n \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.221570995$ 1.253394829 \( -\frac{372082589114986904}{2610969633} a - \frac{181318779827784209}{2610969633} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 4350 a + 369\) , \( -86669 a - 140167\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(4350a+369\right){x}-86669a-140167$
41616.5-n2 41616.5-n \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.443141991$ 1.253394829 \( \frac{147770521717808}{17596287801} a - \frac{136210703475223}{17596287801} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 270 a + 29\) , \( -1533 a - 2059\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(270a+29\right){x}-1533a-2059$
41616.5-n3 41616.5-n \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.221570995$ 1.253394829 \( \frac{1695948356939509768}{15730800405203547} a - \frac{7330062339265374821}{15730800405203547} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 30 a - 631\) , \( -45 a - 12655\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(30a-631\right){x}-45a-12655$
41616.5-n4 41616.5-n \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.886283983$ 1.253394829 \( -\frac{3780522976}{2255067} a + \frac{417620747}{2255067} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 30 a + 49\) , \( -141 a + 137\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(30a+49\right){x}-141a+137$
41616.5-o1 41616.5-o \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.187019453$ $1.082181930$ 5.449973205 \( \frac{14811123712}{96702579} a + \frac{26737709056}{96702579} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 12 a - 18\) , \( 6 a + 102\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(12a-18\right){x}+6a+102$
41616.5-p1 41616.5-p \(\Q(\sqrt{-2}) \) \( 2^{4} \cdot 3^{2} \cdot 17^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.206897366$ $1.522098751$ 5.195868640 \( -\frac{4676292608}{23409} a - \frac{28524912640}{23409} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 22 a + 62\) , \( 102 a - 129\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(22a+62\right){x}+102a-129$
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.