Properties

Label 2.0.8.1-27648.3-bh3
Base field \(\Q(\sqrt{-2}) \)
Conductor norm \( 27648 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-2}) \)

Generator \(a\), with minimal polynomial \( x^{2} + 2 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 0, 1]))
 
Copy content gp:K = nfinit(Polrev([2, 0, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(498a-741\right){x}-9927a+12573\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([0,0]),K([-1,1]),K([0,0]),K([-741,498]),K([12573,-9927])])
 
Copy content gp:E = ellinit([Polrev([0,0]),Polrev([-1,1]),Polrev([0,0]),Polrev([-741,498]),Polrev([12573,-9927])], K);
 
Copy content magma:E := EllipticCurve([K![0,0],K![-1,1],K![0,0],K![-741,498],K![12573,-9927]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-13 a + 19 : 0 : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((96a-96)\) = \((a)^{10}\cdot(-a-1)\cdot(a-1)^{2}\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 27648 \) = \(2^{10}\cdot3\cdot3^{2}\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $67400626176a-35737251840$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((67400626176a-35737251840)\) = \((a)^{24}\cdot(-a-1)^{5}\cdot(a-1)^{26}\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 10362839986909376151552 \) = \(2^{24}\cdot3^{5}\cdot3^{26}\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{2514081593672}{3486784401} a - \frac{1943385699640}{3486784401} \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 0 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(0\)
Regulator: $\mathrm{Reg}(E/K)$ = \( 1 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ = \( 1 \)
Global period: $\Omega(E/K)$ \( 0.397200802788853744440794102056983574240 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 80 \)  =  \(2^{2}\cdot5\cdot2^{2}\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(2\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 2.8086338114473902036161522583429006056 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$$\begin{aligned}2.808633811 \approx L(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 0.397201 \cdot 1 \cdot 80 } { {2^2 \cdot 2.828427} } \\ & \approx 2.808633811 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 3 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((a)\) \(2\) \(4\) \(I_{10}^{*}\) Additive \(-1\) \(10\) \(24\) \(0\)
\((-a-1)\) \(3\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)
\((a-1)\) \(3\) \(4\) \(I_{20}^{*}\) Additive \(-1\) \(2\) \(26\) \(20\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 5, 10 and 20.
Its isogeny class 27648.3-bh consists of curves linked by isogenies of degrees dividing 20.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.