Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
25992.5-a1 |
25992.5-a |
$1$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
25992.5 |
\( 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
\( 2^{4} \cdot 3^{4} \cdot 19^{6} \) |
$3.20918$ |
$(a), (-a-1), (a-1), (-3a+1), (3a+1)$ |
$2$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
|
|
$1$ |
\( 2^{3} \cdot 3^{2} \) |
$0.014048452$ |
$1.742877918$ |
4.986237382 |
\( \frac{70575104}{61731} \) |
\( \bigl[0\) , \( -1\) , \( a\) , \( 14\) , \( -18\bigr] \) |
${y}^2+a{y}={x}^{3}-{x}^{2}+14{x}-18$ |
25992.5-b1 |
25992.5-b |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
25992.5 |
\( 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
\( 2^{11} \cdot 3^{5} \cdot 19^{5} \) |
$3.20918$ |
$(a), (-a-1), (a-1), (-3a+1), (3a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1.113314158$ |
$1.016839116$ |
3.201953129 |
\( -\frac{911099210395}{10556001} a - \frac{662663918104}{10556001} \) |
\( \bigl[a\) , \( 1\) , \( a\) , \( 50 a + 87\) , \( 174 a - 373\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(50a+87\right){x}+174a-373$ |
25992.5-b2 |
25992.5-b |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
25992.5 |
\( 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
\( 2^{11} \cdot 3^{5} \cdot 19^{5} \) |
$3.20918$ |
$(a), (-a-1), (a-1), (-3a+1), (3a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1.113314158$ |
$1.016839116$ |
3.201953129 |
\( \frac{911099210395}{10556001} a - \frac{662663918104}{10556001} \) |
\( \bigl[a\) , \( 1\) , \( a\) , \( -50 a + 87\) , \( -174 a - 373\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-50a+87\right){x}-174a-373$ |
25992.5-b3 |
25992.5-b |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
25992.5 |
\( 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
\( 2^{10} \cdot 3^{4} \cdot 19^{4} \) |
$3.20918$ |
$(a), (-a-1), (a-1), (-3a+1), (3a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$0.556657079$ |
$2.033678232$ |
3.201953129 |
\( \frac{715822}{3249} \) |
\( \bigl[a\) , \( 1\) , \( a\) , \( 7\) , \( -13\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+7{x}-13$ |
25992.5-b4 |
25992.5-b |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
25992.5 |
\( 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
\( 2^{8} \cdot 3^{2} \cdot 19^{2} \) |
$3.20918$ |
$(a), (-a-1), (a-1), (-3a+1), (3a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1.113314158$ |
$4.067356465$ |
3.201953129 |
\( \frac{470596}{57} \) |
\( \bigl[a\) , \( 1\) , \( a\) , \( -3\) , \( -3\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-3{x}-3$ |
25992.5-c1 |
25992.5-c |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
25992.5 |
\( 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
\( 2^{8} \cdot 3^{3} \cdot 19^{3} \) |
$3.20918$ |
$(a), (-a-1), (a-1), (-3a+1), (3a+1)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$1.337629533$ |
0.945846913 |
\( -\frac{108662362112}{3249} a - \frac{18202716160}{3249} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( 76 a - 95\) , \( 422 a - 166\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(76a-95\right){x}+422a-166$ |
25992.5-c2 |
25992.5-c |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
25992.5 |
\( 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
\( 2^{10} \cdot 3^{6} \cdot 19^{9} \) |
$3.20918$ |
$(a), (-a-1), (a-1), (-3a+1), (3a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.334407383$ |
0.945846913 |
\( -\frac{410003128905041890}{1375668606321} a - \frac{68512985349777374}{1375668606321} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( 79 a + 1230\) , \( -11696 a + 2435\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(79a+1230\right){x}-11696a+2435$ |
25992.5-c3 |
25992.5-c |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
25992.5 |
\( 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
\( 2^{10} \cdot 3^{24} \cdot 19^{3} \) |
$3.20918$ |
$(a), (-a-1), (a-1), (-3a+1), (3a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.334407383$ |
0.945846913 |
\( \frac{354192680084050}{15539866281} a - \frac{588677928726082}{15539866281} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -581 a + 250\) , \( -2356 a + 9323\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-581a+250\right){x}-2356a+9323$ |
25992.5-c4 |
25992.5-c |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
25992.5 |
\( 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
\( 2^{8} \cdot 3^{12} \cdot 19^{6} \) |
$3.20918$ |
$(a), (-a-1), (a-1), (-3a+1), (3a+1)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1$ |
$0.668814766$ |
0.945846913 |
\( \frac{187305362200}{855036081} a + \frac{91888723868}{855036081} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -11 a + 60\) , \( -266 a + 203\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-11a+60\right){x}-266a+203$ |
25992.5-c5 |
25992.5-c |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
25992.5 |
\( 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
\( 2^{4} \cdot 3^{6} \cdot 19^{6} \) |
$3.20918$ |
$(a), (-a-1), (a-1), (-3a+1), (3a+1)$ |
0 |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1$ |
$1.337629533$ |
0.945846913 |
\( -\frac{38345975360}{10556001} a + \frac{56441533136}{10556001} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( 19 a - 25\) , \( -51 a + 15\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(19a-25\right){x}-51a+15$ |
25992.5-c6 |
25992.5-c |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
25992.5 |
\( 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
\( 2^{8} \cdot 3^{3} \cdot 19^{9} \) |
$3.20918$ |
$(a), (-a-1), (a-1), (-3a+1), (3a+1)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1$ |
$0.668814766$ |
0.945846913 |
\( \frac{562622763686312}{152852067369} a + \frac{824822139136660}{152852067369} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( 49 a - 130\) , \( 276 a - 531\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(49a-130\right){x}+276a-531$ |
25992.5-d1 |
25992.5-d |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
25992.5 |
\( 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
\( 2^{8} \cdot 3^{3} \cdot 19^{3} \) |
$3.20918$ |
$(a), (-a-1), (a-1), (-3a+1), (3a+1)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$1.337629533$ |
0.945846913 |
\( \frac{108662362112}{3249} a - \frac{18202716160}{3249} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -76 a - 95\) , \( -422 a - 166\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(-76a-95\right){x}-422a-166$ |
25992.5-d2 |
25992.5-d |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
25992.5 |
\( 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
\( 2^{10} \cdot 3^{6} \cdot 19^{9} \) |
$3.20918$ |
$(a), (-a-1), (a-1), (-3a+1), (3a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.334407383$ |
0.945846913 |
\( \frac{410003128905041890}{1375668606321} a - \frac{68512985349777374}{1375668606321} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -79 a + 1230\) , \( 11696 a + 2435\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-79a+1230\right){x}+11696a+2435$ |
25992.5-d3 |
25992.5-d |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
25992.5 |
\( 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
\( 2^{10} \cdot 3^{24} \cdot 19^{3} \) |
$3.20918$ |
$(a), (-a-1), (a-1), (-3a+1), (3a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.334407383$ |
0.945846913 |
\( -\frac{354192680084050}{15539866281} a - \frac{588677928726082}{15539866281} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( 581 a + 250\) , \( 2356 a + 9323\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(581a+250\right){x}+2356a+9323$ |
25992.5-d4 |
25992.5-d |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
25992.5 |
\( 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
\( 2^{8} \cdot 3^{12} \cdot 19^{6} \) |
$3.20918$ |
$(a), (-a-1), (a-1), (-3a+1), (3a+1)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1$ |
$0.668814766$ |
0.945846913 |
\( -\frac{187305362200}{855036081} a + \frac{91888723868}{855036081} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( 11 a + 60\) , \( 266 a + 203\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(11a+60\right){x}+266a+203$ |
25992.5-d5 |
25992.5-d |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
25992.5 |
\( 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
\( 2^{4} \cdot 3^{6} \cdot 19^{6} \) |
$3.20918$ |
$(a), (-a-1), (a-1), (-3a+1), (3a+1)$ |
0 |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1$ |
$1.337629533$ |
0.945846913 |
\( \frac{38345975360}{10556001} a + \frac{56441533136}{10556001} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -19 a - 25\) , \( 51 a + 15\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-19a-25\right){x}+51a+15$ |
25992.5-d6 |
25992.5-d |
$6$ |
$8$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
25992.5 |
\( 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
\( 2^{8} \cdot 3^{3} \cdot 19^{9} \) |
$3.20918$ |
$(a), (-a-1), (a-1), (-3a+1), (3a+1)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1$ |
$0.668814766$ |
0.945846913 |
\( -\frac{562622763686312}{152852067369} a + \frac{824822139136660}{152852067369} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -49 a - 130\) , \( -276 a - 531\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-49a-130\right){x}-276a-531$ |
25992.5-e1 |
25992.5-e |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
25992.5 |
\( 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
\( 2^{4} \cdot 3^{12} \cdot 19^{4} \) |
$3.20918$ |
$(a), (-a-1), (a-1), (-3a+1), (3a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \cdot 3 \) |
$1$ |
$0.673222874$ |
2.856242760 |
\( -\frac{2491909313363360}{405017091} a - \frac{3136318197436624}{405017091} \) |
\( \bigl[a\) , \( a - 1\) , \( a\) , \( -154 a + 430\) , \( 2410 a + 2502\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-154a+430\right){x}+2410a+2502$ |
25992.5-e2 |
25992.5-e |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
25992.5 |
\( 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 19^{8} \) |
$3.20918$ |
$(a), (-a-1), (a-1), (-3a+1), (3a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \cdot 3 \) |
$1$ |
$0.673222874$ |
2.856242760 |
\( \frac{24757755545600}{11432149083} a - \frac{7750500325376}{11432149083} \) |
\( \bigl[0\) , \( a\) , \( 0\) , \( -42 a + 100\) , \( -288 a - 267\bigr] \) |
${y}^2={x}^{3}+a{x}^{2}+\left(-42a+100\right){x}-288a-267$ |
25992.5-f1 |
25992.5-f |
$1$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
25992.5 |
\( 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
\( 2^{4} \cdot 3^{12} \cdot 19^{2} \) |
$3.20918$ |
$(a), (-a-1), (a-1), (-3a+1), (3a+1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{5} \) |
$0.063609970$ |
$1.735435969$ |
4.995727764 |
\( -\frac{7265024000}{124659} a + \frac{4315648000}{124659} \) |
\( \bigl[0\) , \( a\) , \( a\) , \( -25 a - 4\) , \( 45 a - 31\bigr] \) |
${y}^2+a{y}={x}^{3}+a{x}^{2}+\left(-25a-4\right){x}+45a-31$ |
25992.5-g1 |
25992.5-g |
$1$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
25992.5 |
\( 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
\( 2^{4} \cdot 3^{12} \cdot 19^{2} \) |
$3.20918$ |
$(a), (-a-1), (a-1), (-3a+1), (3a+1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{5} \) |
$0.063609970$ |
$1.735435969$ |
4.995727764 |
\( \frac{7265024000}{124659} a + \frac{4315648000}{124659} \) |
\( \bigl[0\) , \( -a\) , \( a\) , \( 25 a - 4\) , \( -45 a - 31\bigr] \) |
${y}^2+a{y}={x}^{3}-a{x}^{2}+\left(25a-4\right){x}-45a-31$ |
25992.5-h1 |
25992.5-h |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
25992.5 |
\( 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
\( 2^{4} \cdot 3^{12} \cdot 19^{4} \) |
$3.20918$ |
$(a), (-a-1), (a-1), (-3a+1), (3a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \cdot 3 \) |
$1$ |
$0.673222874$ |
2.856242760 |
\( \frac{2491909313363360}{405017091} a - \frac{3136318197436624}{405017091} \) |
\( \bigl[a\) , \( -a - 1\) , \( a\) , \( 154 a + 430\) , \( -2410 a + 2502\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(154a+430\right){x}-2410a+2502$ |
25992.5-h2 |
25992.5-h |
$2$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
25992.5 |
\( 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 19^{8} \) |
$3.20918$ |
$(a), (-a-1), (a-1), (-3a+1), (3a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \cdot 3 \) |
$1$ |
$0.673222874$ |
2.856242760 |
\( -\frac{24757755545600}{11432149083} a - \frac{7750500325376}{11432149083} \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( 42 a + 100\) , \( 288 a - 267\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(42a+100\right){x}+288a-267$ |
25992.5-i1 |
25992.5-i |
$1$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
25992.5 |
\( 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
\( 2^{4} \cdot 3^{12} \cdot 19^{2} \) |
$3.20918$ |
$(a), (-a-1), (a-1), (-3a+1), (3a+1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
|
|
$1$ |
\( 2^{3} \cdot 3^{2} \) |
$0.032122221$ |
$2.067833808$ |
6.763456351 |
\( -\frac{81415168}{13851} \) |
\( \bigl[0\) , \( 1\) , \( a\) , \( -14\) , \( -28\bigr] \) |
${y}^2+a{y}={x}^{3}+{x}^{2}-14{x}-28$ |
25992.5-j1 |
25992.5-j |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
25992.5 |
\( 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
\( 2^{10} \cdot 3^{24} \cdot 19^{2} \) |
$3.20918$ |
$(a), (-a-1), (a-1), (-3a+1), (3a+1)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \cdot 3^{2} \) |
$0.549034424$ |
$0.527684085$ |
7.374983868 |
\( \frac{9878111854}{10097379} \) |
\( \bigl[a\) , \( 0\) , \( 0\) , \( 142\) , \( 546\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+142{x}+546$ |
25992.5-j2 |
25992.5-j |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
25992.5 |
\( 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
\( 2^{8} \cdot 3^{12} \cdot 19^{4} \) |
$3.20918$ |
$(a), (-a-1), (a-1), (-3a+1), (3a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \cdot 3^{2} \) |
$0.274517212$ |
$1.055368171$ |
7.374983868 |
\( \frac{768400132}{263169} \) |
\( \bigl[a\) , \( 0\) , \( 0\) , \( -48\) , \( 90\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-48{x}+90$ |
25992.5-j3 |
25992.5-j |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
25992.5 |
\( 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
\( 2^{10} \cdot 3^{6} \cdot 19^{8} \) |
$3.20918$ |
$(a), (-a-1), (a-1), (-3a+1), (3a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \cdot 3^{2} \) |
$0.549034424$ |
$0.527684085$ |
7.374983868 |
\( \frac{111223479026}{3518667} \) |
\( \bigl[a\) , \( 0\) , \( 0\) , \( -318\) , \( -2070\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-318{x}-2070$ |
25992.5-j4 |
25992.5-j |
$4$ |
$4$ |
\(\Q(\sqrt{-2}) \) |
$2$ |
$[0, 1]$ |
25992.5 |
\( 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
\( 2^{4} \cdot 3^{6} \cdot 19^{2} \) |
$3.20918$ |
$(a), (-a-1), (a-1), (-3a+1), (3a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2 \cdot 3^{2} \) |
$0.549034424$ |
$2.110736342$ |
7.374983868 |
\( \frac{2211014608}{513} \) |
\( \bigl[a\) , \( 0\) , \( 0\) , \( -43\) , \( 116\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-43{x}+116$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.