Learn more

Refine search


Results (28 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
25992.5-a1 25992.5-a \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.014048452$ $1.742877918$ 4.986237382 \( \frac{70575104}{61731} \) \( \bigl[0\) , \( -1\) , \( a\) , \( 14\) , \( -18\bigr] \) ${y}^2+a{y}={x}^{3}-{x}^{2}+14{x}-18$
25992.5-b1 25992.5-b \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.113314158$ $1.016839116$ 3.201953129 \( -\frac{911099210395}{10556001} a - \frac{662663918104}{10556001} \) \( \bigl[a\) , \( 1\) , \( a\) , \( 50 a + 87\) , \( 174 a - 373\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(50a+87\right){x}+174a-373$
25992.5-b2 25992.5-b \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.113314158$ $1.016839116$ 3.201953129 \( \frac{911099210395}{10556001} a - \frac{662663918104}{10556001} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -50 a + 87\) , \( -174 a - 373\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-50a+87\right){x}-174a-373$
25992.5-b3 25992.5-b \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.556657079$ $2.033678232$ 3.201953129 \( \frac{715822}{3249} \) \( \bigl[a\) , \( 1\) , \( a\) , \( 7\) , \( -13\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+7{x}-13$
25992.5-b4 25992.5-b \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.113314158$ $4.067356465$ 3.201953129 \( \frac{470596}{57} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -3\) , \( -3\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-3{x}-3$
25992.5-c1 25992.5-c \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.337629533$ 0.945846913 \( -\frac{108662362112}{3249} a - \frac{18202716160}{3249} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 76 a - 95\) , \( 422 a - 166\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(76a-95\right){x}+422a-166$
25992.5-c2 25992.5-c \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.334407383$ 0.945846913 \( -\frac{410003128905041890}{1375668606321} a - \frac{68512985349777374}{1375668606321} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 79 a + 1230\) , \( -11696 a + 2435\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(79a+1230\right){x}-11696a+2435$
25992.5-c3 25992.5-c \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.334407383$ 0.945846913 \( \frac{354192680084050}{15539866281} a - \frac{588677928726082}{15539866281} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -581 a + 250\) , \( -2356 a + 9323\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-581a+250\right){x}-2356a+9323$
25992.5-c4 25992.5-c \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.668814766$ 0.945846913 \( \frac{187305362200}{855036081} a + \frac{91888723868}{855036081} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -11 a + 60\) , \( -266 a + 203\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-11a+60\right){x}-266a+203$
25992.5-c5 25992.5-c \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.337629533$ 0.945846913 \( -\frac{38345975360}{10556001} a + \frac{56441533136}{10556001} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 19 a - 25\) , \( -51 a + 15\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(19a-25\right){x}-51a+15$
25992.5-c6 25992.5-c \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.668814766$ 0.945846913 \( \frac{562622763686312}{152852067369} a + \frac{824822139136660}{152852067369} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 49 a - 130\) , \( 276 a - 531\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(49a-130\right){x}+276a-531$
25992.5-d1 25992.5-d \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.337629533$ 0.945846913 \( \frac{108662362112}{3249} a - \frac{18202716160}{3249} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -76 a - 95\) , \( -422 a - 166\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-76a-95\right){x}-422a-166$
25992.5-d2 25992.5-d \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.334407383$ 0.945846913 \( \frac{410003128905041890}{1375668606321} a - \frac{68512985349777374}{1375668606321} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -79 a + 1230\) , \( 11696 a + 2435\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-79a+1230\right){x}+11696a+2435$
25992.5-d3 25992.5-d \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.334407383$ 0.945846913 \( -\frac{354192680084050}{15539866281} a - \frac{588677928726082}{15539866281} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 581 a + 250\) , \( 2356 a + 9323\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(581a+250\right){x}+2356a+9323$
25992.5-d4 25992.5-d \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.668814766$ 0.945846913 \( -\frac{187305362200}{855036081} a + \frac{91888723868}{855036081} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 11 a + 60\) , \( 266 a + 203\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(11a+60\right){x}+266a+203$
25992.5-d5 25992.5-d \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.337629533$ 0.945846913 \( \frac{38345975360}{10556001} a + \frac{56441533136}{10556001} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -19 a - 25\) , \( 51 a + 15\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-19a-25\right){x}+51a+15$
25992.5-d6 25992.5-d \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.668814766$ 0.945846913 \( -\frac{562622763686312}{152852067369} a + \frac{824822139136660}{152852067369} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -49 a - 130\) , \( -276 a - 531\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-49a-130\right){x}-276a-531$
25992.5-e1 25992.5-e \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.673222874$ 2.856242760 \( -\frac{2491909313363360}{405017091} a - \frac{3136318197436624}{405017091} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( -154 a + 430\) , \( 2410 a + 2502\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-154a+430\right){x}+2410a+2502$
25992.5-e2 25992.5-e \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.673222874$ 2.856242760 \( \frac{24757755545600}{11432149083} a - \frac{7750500325376}{11432149083} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -42 a + 100\) , \( -288 a - 267\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-42a+100\right){x}-288a-267$
25992.5-f1 25992.5-f \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.063609970$ $1.735435969$ 4.995727764 \( -\frac{7265024000}{124659} a + \frac{4315648000}{124659} \) \( \bigl[0\) , \( a\) , \( a\) , \( -25 a - 4\) , \( 45 a - 31\bigr] \) ${y}^2+a{y}={x}^{3}+a{x}^{2}+\left(-25a-4\right){x}+45a-31$
25992.5-g1 25992.5-g \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.063609970$ $1.735435969$ 4.995727764 \( \frac{7265024000}{124659} a + \frac{4315648000}{124659} \) \( \bigl[0\) , \( -a\) , \( a\) , \( 25 a - 4\) , \( -45 a - 31\bigr] \) ${y}^2+a{y}={x}^{3}-a{x}^{2}+\left(25a-4\right){x}-45a-31$
25992.5-h1 25992.5-h \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.673222874$ 2.856242760 \( \frac{2491909313363360}{405017091} a - \frac{3136318197436624}{405017091} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 154 a + 430\) , \( -2410 a + 2502\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(154a+430\right){x}-2410a+2502$
25992.5-h2 25992.5-h \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.673222874$ 2.856242760 \( -\frac{24757755545600}{11432149083} a - \frac{7750500325376}{11432149083} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 42 a + 100\) , \( 288 a - 267\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(42a+100\right){x}+288a-267$
25992.5-i1 25992.5-i \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.032122221$ $2.067833808$ 6.763456351 \( -\frac{81415168}{13851} \) \( \bigl[0\) , \( 1\) , \( a\) , \( -14\) , \( -28\bigr] \) ${y}^2+a{y}={x}^{3}+{x}^{2}-14{x}-28$
25992.5-j1 25992.5-j \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.549034424$ $0.527684085$ 7.374983868 \( \frac{9878111854}{10097379} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( 142\) , \( 546\bigr] \) ${y}^2+a{x}{y}={x}^{3}+142{x}+546$
25992.5-j2 25992.5-j \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.274517212$ $1.055368171$ 7.374983868 \( \frac{768400132}{263169} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( -48\) , \( 90\bigr] \) ${y}^2+a{x}{y}={x}^{3}-48{x}+90$
25992.5-j3 25992.5-j \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.549034424$ $0.527684085$ 7.374983868 \( \frac{111223479026}{3518667} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( -318\) , \( -2070\bigr] \) ${y}^2+a{x}{y}={x}^{3}-318{x}-2070$
25992.5-j4 25992.5-j \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.549034424$ $2.110736342$ 7.374983868 \( \frac{2211014608}{513} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( -43\) , \( 116\bigr] \) ${y}^2+a{x}{y}={x}^{3}-43{x}+116$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.