Learn more

Refine search


Results (28 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
25992.5-a1 25992.5-a Q(2)\Q(\sqrt{-2}) 2332192 2^{3} \cdot 3^{2} \cdot 19^{2} 22 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.0140484520.014048452 1.7428779181.742877918 4.986237382 7057510461731 \frac{70575104}{61731} [0 \bigl[0 , 1 -1 , a a , 14 14 , 18] -18\bigr] y2+ay=x3x2+14x18{y}^2+a{y}={x}^{3}-{x}^{2}+14{x}-18
25992.5-b1 25992.5-b Q(2)\Q(\sqrt{-2}) 2332192 2^{3} \cdot 3^{2} \cdot 19^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.1133141581.113314158 1.0168391161.016839116 3.201953129 91109921039510556001a66266391810410556001 -\frac{911099210395}{10556001} a - \frac{662663918104}{10556001} [a \bigl[a , 1 1 , a a , 50a+87 50 a + 87 , 174a373] 174 a - 373\bigr] y2+axy+ay=x3+x2+(50a+87)x+174a373{y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(50a+87\right){x}+174a-373
25992.5-b2 25992.5-b Q(2)\Q(\sqrt{-2}) 2332192 2^{3} \cdot 3^{2} \cdot 19^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.1133141581.113314158 1.0168391161.016839116 3.201953129 91109921039510556001a66266391810410556001 \frac{911099210395}{10556001} a - \frac{662663918104}{10556001} [a \bigl[a , 1 1 , a a , 50a+87 -50 a + 87 , 174a373] -174 a - 373\bigr] y2+axy+ay=x3+x2+(50a+87)x174a373{y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-50a+87\right){x}-174a-373
25992.5-b3 25992.5-b Q(2)\Q(\sqrt{-2}) 2332192 2^{3} \cdot 3^{2} \cdot 19^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.5566570790.556657079 2.0336782322.033678232 3.201953129 7158223249 \frac{715822}{3249} [a \bigl[a , 1 1 , a a , 7 7 , 13] -13\bigr] y2+axy+ay=x3+x2+7x13{y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+7{x}-13
25992.5-b4 25992.5-b Q(2)\Q(\sqrt{-2}) 2332192 2^{3} \cdot 3^{2} \cdot 19^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.1133141581.113314158 4.0673564654.067356465 3.201953129 47059657 \frac{470596}{57} [a \bigl[a , 1 1 , a a , 3 -3 , 3] -3\bigr] y2+axy+ay=x3+x23x3{y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-3{x}-3
25992.5-c1 25992.5-c Q(2)\Q(\sqrt{-2}) 2332192 2^{3} \cdot 3^{2} \cdot 19^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 1.3376295331.337629533 0.945846913 1086623621123249a182027161603249 -\frac{108662362112}{3249} a - \frac{18202716160}{3249} [0 \bigl[0 , 1 -1 , 0 0 , 76a95 76 a - 95 , 422a166] 422 a - 166\bigr] y2=x3x2+(76a95)x+422a166{y}^2={x}^{3}-{x}^{2}+\left(76a-95\right){x}+422a-166
25992.5-c2 25992.5-c Q(2)\Q(\sqrt{-2}) 2332192 2^{3} \cdot 3^{2} \cdot 19^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.3344073830.334407383 0.945846913 4100031289050418901375668606321a685129853497773741375668606321 -\frac{410003128905041890}{1375668606321} a - \frac{68512985349777374}{1375668606321} [a \bigl[a , 1 1 , 0 0 , 79a+1230 79 a + 1230 , 11696a+2435] -11696 a + 2435\bigr] y2+axy=x3+x2+(79a+1230)x11696a+2435{y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(79a+1230\right){x}-11696a+2435
25992.5-c3 25992.5-c Q(2)\Q(\sqrt{-2}) 2332192 2^{3} \cdot 3^{2} \cdot 19^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.3344073830.334407383 0.945846913 35419268008405015539866281a58867792872608215539866281 \frac{354192680084050}{15539866281} a - \frac{588677928726082}{15539866281} [a \bigl[a , 1 1 , 0 0 , 581a+250 -581 a + 250 , 2356a+9323] -2356 a + 9323\bigr] y2+axy=x3+x2+(581a+250)x2356a+9323{y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-581a+250\right){x}-2356a+9323
25992.5-c4 25992.5-c Q(2)\Q(\sqrt{-2}) 2332192 2^{3} \cdot 3^{2} \cdot 19^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.6688147660.668814766 0.945846913 187305362200855036081a+91888723868855036081 \frac{187305362200}{855036081} a + \frac{91888723868}{855036081} [a \bigl[a , 1 1 , 0 0 , 11a+60 -11 a + 60 , 266a+203] -266 a + 203\bigr] y2+axy=x3+x2+(11a+60)x266a+203{y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-11a+60\right){x}-266a+203
25992.5-c5 25992.5-c Q(2)\Q(\sqrt{-2}) 2332192 2^{3} \cdot 3^{2} \cdot 19^{2} 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 1.3376295331.337629533 0.945846913 3834597536010556001a+5644153313610556001 -\frac{38345975360}{10556001} a + \frac{56441533136}{10556001} [a \bigl[a , 1 1 , 0 0 , 19a25 19 a - 25 , 51a+15] -51 a + 15\bigr] y2+axy=x3+x2+(19a25)x51a+15{y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(19a-25\right){x}-51a+15
25992.5-c6 25992.5-c Q(2)\Q(\sqrt{-2}) 2332192 2^{3} \cdot 3^{2} \cdot 19^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 0.6688147660.668814766 0.945846913 562622763686312152852067369a+824822139136660152852067369 \frac{562622763686312}{152852067369} a + \frac{824822139136660}{152852067369} [a \bigl[a , 1 1 , 0 0 , 49a130 49 a - 130 , 276a531] 276 a - 531\bigr] y2+axy=x3+x2+(49a130)x+276a531{y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(49a-130\right){x}+276a-531
25992.5-d1 25992.5-d Q(2)\Q(\sqrt{-2}) 2332192 2^{3} \cdot 3^{2} \cdot 19^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 1.3376295331.337629533 0.945846913 1086623621123249a182027161603249 \frac{108662362112}{3249} a - \frac{18202716160}{3249} [0 \bigl[0 , 1 -1 , 0 0 , 76a95 -76 a - 95 , 422a166] -422 a - 166\bigr] y2=x3x2+(76a95)x422a166{y}^2={x}^{3}-{x}^{2}+\left(-76a-95\right){x}-422a-166
25992.5-d2 25992.5-d Q(2)\Q(\sqrt{-2}) 2332192 2^{3} \cdot 3^{2} \cdot 19^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.3344073830.334407383 0.945846913 4100031289050418901375668606321a685129853497773741375668606321 \frac{410003128905041890}{1375668606321} a - \frac{68512985349777374}{1375668606321} [a \bigl[a , 1 1 , 0 0 , 79a+1230 -79 a + 1230 , 11696a+2435] 11696 a + 2435\bigr] y2+axy=x3+x2+(79a+1230)x+11696a+2435{y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-79a+1230\right){x}+11696a+2435
25992.5-d3 25992.5-d Q(2)\Q(\sqrt{-2}) 2332192 2^{3} \cdot 3^{2} \cdot 19^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.3344073830.334407383 0.945846913 35419268008405015539866281a58867792872608215539866281 -\frac{354192680084050}{15539866281} a - \frac{588677928726082}{15539866281} [a \bigl[a , 1 1 , 0 0 , 581a+250 581 a + 250 , 2356a+9323] 2356 a + 9323\bigr] y2+axy=x3+x2+(581a+250)x+2356a+9323{y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(581a+250\right){x}+2356a+9323
25992.5-d4 25992.5-d Q(2)\Q(\sqrt{-2}) 2332192 2^{3} \cdot 3^{2} \cdot 19^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.6688147660.668814766 0.945846913 187305362200855036081a+91888723868855036081 -\frac{187305362200}{855036081} a + \frac{91888723868}{855036081} [a \bigl[a , 1 1 , 0 0 , 11a+60 11 a + 60 , 266a+203] 266 a + 203\bigr] y2+axy=x3+x2+(11a+60)x+266a+203{y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(11a+60\right){x}+266a+203
25992.5-d5 25992.5-d Q(2)\Q(\sqrt{-2}) 2332192 2^{3} \cdot 3^{2} \cdot 19^{2} 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 1.3376295331.337629533 0.945846913 3834597536010556001a+5644153313610556001 \frac{38345975360}{10556001} a + \frac{56441533136}{10556001} [a \bigl[a , 1 1 , 0 0 , 19a25 -19 a - 25 , 51a+15] 51 a + 15\bigr] y2+axy=x3+x2+(19a25)x+51a+15{y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-19a-25\right){x}+51a+15
25992.5-d6 25992.5-d Q(2)\Q(\sqrt{-2}) 2332192 2^{3} \cdot 3^{2} \cdot 19^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 0.6688147660.668814766 0.945846913 562622763686312152852067369a+824822139136660152852067369 -\frac{562622763686312}{152852067369} a + \frac{824822139136660}{152852067369} [a \bigl[a , 1 1 , 0 0 , 49a130 -49 a - 130 , 276a531] -276 a - 531\bigr] y2+axy=x3+x2+(49a130)x276a531{y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-49a-130\right){x}-276a-531
25992.5-e1 25992.5-e Q(2)\Q(\sqrt{-2}) 2332192 2^{3} \cdot 3^{2} \cdot 19^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.6732228740.673222874 2.856242760 2491909313363360405017091a3136318197436624405017091 -\frac{2491909313363360}{405017091} a - \frac{3136318197436624}{405017091} [a \bigl[a , a1 a - 1 , a a , 154a+430 -154 a + 430 , 2410a+2502] 2410 a + 2502\bigr] y2+axy+ay=x3+(a1)x2+(154a+430)x+2410a+2502{y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-154a+430\right){x}+2410a+2502
25992.5-e2 25992.5-e Q(2)\Q(\sqrt{-2}) 2332192 2^{3} \cdot 3^{2} \cdot 19^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.6732228740.673222874 2.856242760 2475775554560011432149083a775050032537611432149083 \frac{24757755545600}{11432149083} a - \frac{7750500325376}{11432149083} [0 \bigl[0 , a a , 0 0 , 42a+100 -42 a + 100 , 288a267] -288 a - 267\bigr] y2=x3+ax2+(42a+100)x288a267{y}^2={x}^{3}+a{x}^{2}+\left(-42a+100\right){x}-288a-267
25992.5-f1 25992.5-f Q(2)\Q(\sqrt{-2}) 2332192 2^{3} \cdot 3^{2} \cdot 19^{2} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.0636099700.063609970 1.7354359691.735435969 4.995727764 7265024000124659a+4315648000124659 -\frac{7265024000}{124659} a + \frac{4315648000}{124659} [0 \bigl[0 , a a , a a , 25a4 -25 a - 4 , 45a31] 45 a - 31\bigr] y2+ay=x3+ax2+(25a4)x+45a31{y}^2+a{y}={x}^{3}+a{x}^{2}+\left(-25a-4\right){x}+45a-31
25992.5-g1 25992.5-g Q(2)\Q(\sqrt{-2}) 2332192 2^{3} \cdot 3^{2} \cdot 19^{2} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.0636099700.063609970 1.7354359691.735435969 4.995727764 7265024000124659a+4315648000124659 \frac{7265024000}{124659} a + \frac{4315648000}{124659} [0 \bigl[0 , a -a , a a , 25a4 25 a - 4 , 45a31] -45 a - 31\bigr] y2+ay=x3ax2+(25a4)x45a31{y}^2+a{y}={x}^{3}-a{x}^{2}+\left(25a-4\right){x}-45a-31
25992.5-h1 25992.5-h Q(2)\Q(\sqrt{-2}) 2332192 2^{3} \cdot 3^{2} \cdot 19^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.6732228740.673222874 2.856242760 2491909313363360405017091a3136318197436624405017091 \frac{2491909313363360}{405017091} a - \frac{3136318197436624}{405017091} [a \bigl[a , a1 -a - 1 , a a , 154a+430 154 a + 430 , 2410a+2502] -2410 a + 2502\bigr] y2+axy+ay=x3+(a1)x2+(154a+430)x2410a+2502{y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(154a+430\right){x}-2410a+2502
25992.5-h2 25992.5-h Q(2)\Q(\sqrt{-2}) 2332192 2^{3} \cdot 3^{2} \cdot 19^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.6732228740.673222874 2.856242760 2475775554560011432149083a775050032537611432149083 -\frac{24757755545600}{11432149083} a - \frac{7750500325376}{11432149083} [0 \bigl[0 , a -a , 0 0 , 42a+100 42 a + 100 , 288a267] 288 a - 267\bigr] y2=x3ax2+(42a+100)x+288a267{y}^2={x}^{3}-a{x}^{2}+\left(42a+100\right){x}+288a-267
25992.5-i1 25992.5-i Q(2)\Q(\sqrt{-2}) 2332192 2^{3} \cdot 3^{2} \cdot 19^{2} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.0321222210.032122221 2.0678338082.067833808 6.763456351 8141516813851 -\frac{81415168}{13851} [0 \bigl[0 , 1 1 , a a , 14 -14 , 28] -28\bigr] y2+ay=x3+x214x28{y}^2+a{y}={x}^{3}+{x}^{2}-14{x}-28
25992.5-j1 25992.5-j Q(2)\Q(\sqrt{-2}) 2332192 2^{3} \cdot 3^{2} \cdot 19^{2} 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 0.5490344240.549034424 0.5276840850.527684085 7.374983868 987811185410097379 \frac{9878111854}{10097379} [a \bigl[a , 0 0 , 0 0 , 142 142 , 546] 546\bigr] y2+axy=x3+142x+546{y}^2+a{x}{y}={x}^{3}+142{x}+546
25992.5-j2 25992.5-j Q(2)\Q(\sqrt{-2}) 2332192 2^{3} \cdot 3^{2} \cdot 19^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.2745172120.274517212 1.0553681711.055368171 7.374983868 768400132263169 \frac{768400132}{263169} [a \bigl[a , 0 0 , 0 0 , 48 -48 , 90] 90\bigr] y2+axy=x348x+90{y}^2+a{x}{y}={x}^{3}-48{x}+90
25992.5-j3 25992.5-j Q(2)\Q(\sqrt{-2}) 2332192 2^{3} \cdot 3^{2} \cdot 19^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.5490344240.549034424 0.5276840850.527684085 7.374983868 1112234790263518667 \frac{111223479026}{3518667} [a \bigl[a , 0 0 , 0 0 , 318 -318 , 2070] -2070\bigr] y2+axy=x3318x2070{y}^2+a{x}{y}={x}^{3}-318{x}-2070
25992.5-j4 25992.5-j Q(2)\Q(\sqrt{-2}) 2332192 2^{3} \cdot 3^{2} \cdot 19^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.5490344240.549034424 2.1107363422.110736342 7.374983868 2211014608513 \frac{2211014608}{513} [a \bigl[a , 0 0 , 0 0 , 43 -43 , 116] 116\bigr] y2+axy=x343x+116{y}^2+a{x}{y}={x}^{3}-43{x}+116
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.