Properties

Label 2.0.8.1-25992.5-a1
Base field \(\Q(\sqrt{-2}) \)
Conductor norm \( 25992 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 1 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-2}) \)

Generator \(a\), with minimal polynomial \( x^{2} + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 0, 1]))
 
gp: K = nfinit(Polrev([2, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, 1]);
 

Weierstrass equation

\({y}^2+a{y}={x}^{3}-{x}^{2}+14{x}-18\)
sage: E = EllipticCurve([K([0,0]),K([-1,0]),K([0,1]),K([14,0]),K([-18,0])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([-1,0]),Polrev([0,1]),Polrev([14,0]),Polrev([-18,0])], K);
 
magma: E := EllipticCurve([K![0,0],K![-1,0],K![0,1],K![14,0],K![-18,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((114a)\) = \((a)^{3}\cdot(-a-1)\cdot(a-1)\cdot(-3a+1)\cdot(3a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 25992 \) = \(2^{3}\cdot3\cdot3\cdot19\cdot19\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-246924)\) = \((a)^{4}\cdot(-a-1)^{2}\cdot(a-1)^{2}\cdot(-3a+1)^{3}\cdot(3a+1)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 60971461776 \) = \(2^{4}\cdot3^{2}\cdot3^{2}\cdot19^{3}\cdot19^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{70575104}{61731} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(2\)
Generators $\left(a + 2 : -3 a - 4 : 1\right)$ $\left(-a + 2 : -3 a + 4 : 1\right)$
Heights \(0.16996346027613047159426612683507532303\) \(0.16996346027613047159426612683507532303\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 2 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(2\)
Regulator: \( 0.014048452676553539710096100400174352049 \)
Period: \( 1.7428779183727856967359204335307302446 \)
Tamagawa product: \( 72 \)  =  \(2\cdot2\cdot2\cdot3\cdot3\)
Torsion order: \(1\)
Leading coefficient: \( 4.9862373826064918776892320977921759653 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(2\) \(III\) Additive \(-1\) \(3\) \(4\) \(0\)
\((-a-1)\) \(3\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((a-1)\) \(3\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((-3a+1)\) \(19\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)
\((3a+1)\) \(19\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 25992.5-a consists of this curve only.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 456.a1
\(\Q\) 3648.g1