Properties

Base field Q(7)\Q(\sqrt{-7})
Label 2.0.7.1-896.7-b
Conductor 896.7
Rank 0 0

Related objects

Learn more

Base field Q(7)\Q(\sqrt{-7})

Generator aa, with minimal polynomial x2x+2 x^{2} - x + 2 ; class number 11.

Elliptic curves in class 896.7-b over Q(7)\Q(\sqrt{-7})

Isogeny class 896.7-b contains 12 curves linked by isogenies of degrees dividing 36.

Curve label Weierstrass Coefficients
896.7-b1 [a+1 \bigl[a + 1 , a+1 -a + 1 , a+1 a + 1 , 851a1193 851 a - 1193 , 14853a9611] 14853 a - 9611\bigr]
896.7-b2 [a+1 \bigl[a + 1 , a a , 0 0 , 100a+11 -100 a + 11 , 400a335] 400 a - 335\bigr]
896.7-b3 [a+1 \bigl[a + 1 , a1 -a - 1 , a+1 a + 1 , 12a+144 -12 a + 144 , 463a201] 463 a - 201\bigr]
896.7-b4 [a+1 \bigl[a + 1 , a1 -a - 1 , a+1 a + 1 , 7a+9 -7 a + 9 , a15] a - 15\bigr]
896.7-b5 [a+1 \bigl[a + 1 , a a , 0 0 , 5a+6 -5 a + 6 , 3a+16] 3 a + 16\bigr]
896.7-b6 [a+1 \bigl[a + 1 , a+1 -a + 1 , a+1 a + 1 , a3 a - 3 , 5a+3] -5 a + 3\bigr]
896.7-b7 [a+1 \bigl[a + 1 , a+1 -a + 1 , a+1 a + 1 , 24a+32 -24 a + 32 , 97a63] 97 a - 63\bigr]
896.7-b8 [a+1 \bigl[a + 1 , a a , 0 0 , 255a+26 255 a + 26 , 2541a2718] 2541 a - 2718\bigr]
896.7-b9 [a+1 \bigl[a + 1 , a1 -a - 1 , a+1 a + 1 , 17a361 -17 a - 361 , 2579a629] 2579 a - 629\bigr]
896.7-b10 [a+1 \bigl[a + 1 , a+1 -a + 1 , a+1 a + 1 , 176a248 176 a - 248 , 1185a767] 1185 a - 767\bigr]
896.7-b11 [a+1 \bigl[a + 1 , a+1 -a + 1 , a+1 a + 1 , 51a73 51 a - 73 , 209a+135] -209 a + 135\bigr]
896.7-b12 [a+1 \bigl[a + 1 , a+1 -a + 1 , a+1 a + 1 , 13651a19113 13651 a - 19113 , 937477a606603] 937477 a - 606603\bigr]

Rank

Rank: 0 0

Isogeny matrix

(166181893226182614123623124121264131262123412121812314263691243618312412693612436966221318186218322663166266231236918614123642123936186411236464412126212121331812124426363631921212363618644391)\left(\begin{array}{rrrrrrrrrrrr} 1 & 6 & 6 & 18 & 18 & 9 & 3 & 2 & 2 & 6 & 18 & 2 \\ 6 & 1 & 4 & 12 & 3 & 6 & 2 & 3 & 12 & 4 & 12 & 12 \\ 6 & 4 & 1 & 3 & 12 & 6 & 2 & 12 & 3 & 4 & 12 & 12 \\ 18 & 12 & 3 & 1 & 4 & 2 & 6 & 36 & 9 & 12 & 4 & 36 \\ 18 & 3 & 12 & 4 & 1 & 2 & 6 & 9 & 36 & 12 & 4 & 36 \\ 9 & 6 & 6 & 2 & 2 & 1 & 3 & 18 & 18 & 6 & 2 & 18 \\ 3 & 2 & 2 & 6 & 6 & 3 & 1 & 6 & 6 & 2 & 6 & 6 \\ 2 & 3 & 12 & 36 & 9 & 18 & 6 & 1 & 4 & 12 & 36 & 4 \\ 2 & 12 & 3 & 9 & 36 & 18 & 6 & 4 & 1 & 12 & 36 & 4 \\ 6 & 4 & 4 & 12 & 12 & 6 & 2 & 12 & 12 & 1 & 3 & 3 \\ 18 & 12 & 12 & 4 & 4 & 2 & 6 & 36 & 36 & 3 & 1 & 9 \\ 2 & 12 & 12 & 36 & 36 & 18 & 6 & 4 & 4 & 3 & 9 & 1 \end{array}\right)

Isogeny graph