Properties

Base field \(\Q(\sqrt{-7}) \)
Label 2.0.7.1-896.7-b
Conductor 896.7
Rank \( 0 \)

Related objects

Learn more

Base field \(\Q(\sqrt{-7}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 2 \); class number \(1\).

Elliptic curves in class 896.7-b over \(\Q(\sqrt{-7}) \)

Isogeny class 896.7-b contains 12 curves linked by isogenies of degrees dividing 36.

Curve label Weierstrass Coefficients
896.7-b1 \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( 851 a - 1193\) , \( 14853 a - 9611\bigr] \)
896.7-b2 \( \bigl[a + 1\) , \( a\) , \( 0\) , \( -100 a + 11\) , \( 400 a - 335\bigr] \)
896.7-b3 \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -12 a + 144\) , \( 463 a - 201\bigr] \)
896.7-b4 \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -7 a + 9\) , \( a - 15\bigr] \)
896.7-b5 \( \bigl[a + 1\) , \( a\) , \( 0\) , \( -5 a + 6\) , \( 3 a + 16\bigr] \)
896.7-b6 \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( a - 3\) , \( -5 a + 3\bigr] \)
896.7-b7 \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( -24 a + 32\) , \( 97 a - 63\bigr] \)
896.7-b8 \( \bigl[a + 1\) , \( a\) , \( 0\) , \( 255 a + 26\) , \( 2541 a - 2718\bigr] \)
896.7-b9 \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -17 a - 361\) , \( 2579 a - 629\bigr] \)
896.7-b10 \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( 176 a - 248\) , \( 1185 a - 767\bigr] \)
896.7-b11 \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( 51 a - 73\) , \( -209 a + 135\bigr] \)
896.7-b12 \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( 13651 a - 19113\) , \( 937477 a - 606603\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrrrrrrrrrr} 1 & 6 & 6 & 18 & 18 & 9 & 3 & 2 & 2 & 6 & 18 & 2 \\ 6 & 1 & 4 & 12 & 3 & 6 & 2 & 3 & 12 & 4 & 12 & 12 \\ 6 & 4 & 1 & 3 & 12 & 6 & 2 & 12 & 3 & 4 & 12 & 12 \\ 18 & 12 & 3 & 1 & 4 & 2 & 6 & 36 & 9 & 12 & 4 & 36 \\ 18 & 3 & 12 & 4 & 1 & 2 & 6 & 9 & 36 & 12 & 4 & 36 \\ 9 & 6 & 6 & 2 & 2 & 1 & 3 & 18 & 18 & 6 & 2 & 18 \\ 3 & 2 & 2 & 6 & 6 & 3 & 1 & 6 & 6 & 2 & 6 & 6 \\ 2 & 3 & 12 & 36 & 9 & 18 & 6 & 1 & 4 & 12 & 36 & 4 \\ 2 & 12 & 3 & 9 & 36 & 18 & 6 & 4 & 1 & 12 & 36 & 4 \\ 6 & 4 & 4 & 12 & 12 & 6 & 2 & 12 & 12 & 1 & 3 & 3 \\ 18 & 12 & 12 & 4 & 4 & 2 & 6 & 36 & 36 & 3 & 1 & 9 \\ 2 & 12 & 12 & 36 & 36 & 18 & 6 & 4 & 4 & 3 & 9 & 1 \end{array}\right)\)

Isogeny graph