Learn more

Refine search


Results (32 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
52000.5-a1 52000.5-a \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.215561221$ $4.408756167$ 3.801427458 \( -\frac{1374}{65} a + \frac{116018}{65} \) \( \bigl[i + 1\) , \( i - 1\) , \( 0\) , \( i + 1\) , \( -1\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i-1\right){x}^{2}+\left(i+1\right){x}-1$
52000.5-b1 52000.5-b \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.621322125$ $0.532258081$ 3.451847214 \( \frac{363114750592}{4225} a - \frac{51978449984}{4225} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -68 i + 968\) , \( 11542 i + 1544\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-68i+968\right){x}+11542i+1544$
52000.5-b2 52000.5-b \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.242644250$ $0.266129040$ 3.451847214 \( -\frac{139247548851818}{5078125} a - \frac{4765670334626}{5078125} \) \( \bigl[i + 1\) , \( i + 1\) , \( i + 1\) , \( -1463 i + 3076\) , \( -59130 i - 45519\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-1463i+3076\right){x}-59130i-45519$
52000.5-b3 52000.5-b \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.405330531$ $0.532258081$ 3.451847214 \( -\frac{4367603145928}{20393268025} a + \frac{514683042256}{20393268025} \) \( \bigl[i + 1\) , \( i - 1\) , \( i + 1\) , \( 55 i - 64\) , \( -868 i - 266\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i-1\right){x}^{2}+\left(55i-64\right){x}-868i-266$
52000.5-b4 52000.5-b \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.242644250$ $0.266129040$ 3.451847214 \( \frac{778063252549418}{1983642578125} a + \frac{463325304434674}{1983642578125} \) \( \bigl[i + 1\) , \( i + 1\) , \( i + 1\) , \( -33 i - 434\) , \( -5764 i - 3381\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-33i-434\right){x}-5764i-3381$
52000.5-b5 52000.5-b \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.621322125$ $0.532258081$ 3.451847214 \( -\frac{246826028856}{66015625} a + \frac{291128921792}{66015625} \) \( \bigl[i + 1\) , \( i + 1\) , \( i + 1\) , \( -88 i + 201\) , \( -755 i - 644\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-88i+201\right){x}-755i-644$
52000.5-b6 52000.5-b \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.810661062$ $0.532258081$ 3.451847214 \( \frac{125379433344}{17850625} a + \frac{122487180992}{17850625} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 22 i - 246\) , \( -6 i + 1408\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(22i-246\right){x}-6i+1408$
52000.5-c1 52000.5-c \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.642527931$ 2.570111724 \( \frac{959507758902}{5078125} a - \frac{410040476086}{5078125} \) \( \bigl[i + 1\) , \( -1\) , \( i + 1\) , \( -291 i - 70\) , \( -1717 i + 903\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-{x}^{2}+\left(-291i-70\right){x}-1717i+903$
52000.5-c2 52000.5-c \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.285055862$ 2.570111724 \( -\frac{24755584}{325} a - \frac{19408448}{325} \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( 28 i - 59\) , \( 101 i - 149\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(28i-59\right){x}+101i-149$
52000.5-c3 52000.5-c \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.285055862$ 2.570111724 \( -\frac{11655336}{105625} a + \frac{23620448}{105625} \) \( \bigl[i + 1\) , \( -1\) , \( i + 1\) , \( -16 i + 5\) , \( -52 i - 2\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-{x}^{2}+\left(-16i+5\right){x}-52i-2$
52000.5-c4 52000.5-c \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.642527931$ 2.570111724 \( \frac{36855806386}{17850625} a + \frac{134629168798}{17850625} \) \( \bigl[i + 1\) , \( -1\) , \( i + 1\) , \( 139 i - 80\) , \( -763 i + 25\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-{x}^{2}+\left(139i-80\right){x}-763i+25$
52000.5-d1 52000.5-d \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.701269099$ $0.772818770$ 4.335631386 \( \frac{41546262094}{120670225} a + \frac{205320721442}{120670225} \) \( \bigl[i + 1\) , \( -i\) , \( i + 1\) , \( 31 i - 72\) , \( -114\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(31i-72\right){x}-114$
52000.5-d2 52000.5-d \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.402538198$ $1.545637541$ 4.335631386 \( -\frac{904474088}{10985} a + \frac{641656096}{10985} \) \( \bigl[i + 1\) , \( 0\) , \( i + 1\) , \( 26 i - 37\) , \( 90 i - 73\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(26i-37\right){x}+90i-73$
52000.5-e1 52000.5-e \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.576732977$ 2.306931910 \( \frac{428516992}{5078125} a + \frac{527147456}{5078125} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 62 i + 8\) , \( -624 i + 156\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(62i+8\right){x}-624i+156$
52000.5-e2 52000.5-e \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.576732977$ 2.306931910 \( -\frac{19043187328}{105625} a + \frac{1934453696}{105625} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( -328 i + 154\) , \( 294 i - 2742\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(-328i+154\right){x}+294i-2742$
52000.5-f1 52000.5-f \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.099440846$ $1.289614142$ 4.103690288 \( \frac{428516992}{5078125} a + \frac{527147456}{5078125} \) \( \bigl[0\) , \( -i - 1\) , \( 0\) , \( -8 i + 9\) , \( 59 i - 9\bigr] \) ${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(-8i+9\right){x}+59i-9$
52000.5-f2 52000.5-f \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.198881692$ $1.289614142$ 4.103690288 \( -\frac{19043187328}{105625} a + \frac{1934453696}{105625} \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( 14 i - 71\) , \( -101 i + 245\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(14i-71\right){x}-101i+245$
52000.5-g1 52000.5-g \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.603639602$ $0.877696423$ 4.238498565 \( \frac{170823808}{714025} a + \frac{756097984}{714025} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 48 i + 22\) , \( -126 i - 2\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(48i+22\right){x}-126i-2$
52000.5-g2 52000.5-g \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.301819801$ $0.877696423$ 4.238498565 \( -\frac{54739584}{105625} a + \frac{278314688}{105625} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 58 i + 36\) , \( 8 i - 144\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(58i+36\right){x}+8i-144$
52000.5-g3 52000.5-g \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.603639602$ $0.877696423$ 4.238498565 \( \frac{72142218728}{5078125} a + \frac{166548601504}{5078125} \) \( \bigl[i + 1\) , \( 0\) , \( i + 1\) , \( -108 i - 49\) , \( 466 i - 55\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-108i-49\right){x}+466i-55$
52000.5-g4 52000.5-g \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.603639602$ $0.877696423$ 4.238498565 \( -\frac{16041806568}{8125} a + \frac{23413439024}{8125} \) \( \bigl[i + 1\) , \( -i\) , \( 0\) , \( -202 i - 134\) , \( 1468 i + 101\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}-i{x}^{2}+\left(-202i-134\right){x}+1468i+101$
52000.5-h1 52000.5-h \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.276496286$ 2.211970294 \( -\frac{306369913373848}{17850625} a - \frac{2142057330263024}{17850625} \) \( \bigl[i + 1\) , \( -i\) , \( i + 1\) , \( -1663 i + 3336\) , \( -67920 i - 56249\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(-1663i+3336\right){x}-67920i-56249$
52000.5-h2 52000.5-h \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.276496286$ 2.211970294 \( \frac{383712134285368}{1983642578125} a - \frac{480402061726976}{1983642578125} \) \( \bigl[i + 1\) , \( -i\) , \( 0\) , \( -217 i - 279\) , \( -6144 i - 1890\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}-i{x}^{2}+\left(-217i-279\right){x}-6144i-1890$
52000.5-h3 52000.5-h \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.276496286$ 2.211970294 \( -\frac{723822505344}{66015625} a + \frac{100772067008}{66015625} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 398 i - 844\) , \( 7492 i - 8356\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(398i-844\right){x}+7492i-8356$
52000.5-h4 52000.5-h \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.276496286$ 2.211970294 \( \frac{11876976934272}{3173828125} a + \frac{5317173197504}{3173828125} \) \( \bigl[0\) , \( i\) , \( 0\) , \( 88 i + 742\) , \( 7186 i - 2918\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+\left(88i+742\right){x}+7186i-2918$
52000.5-i1 52000.5-i \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.269556819$ $1.078073649$ 4.649633659 \( \frac{9109431098}{8125} a - \frac{703641086}{8125} \) \( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( 101 i + 93\) , \( -180 i + 635\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(101i+93\right){x}-180i+635$
52000.5-i2 52000.5-i \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.539113638$ $2.156147299$ 4.649633659 \( \frac{2630664}{4225} a + \frac{6709952}{4225} \) \( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( 6 i + 8\) , \( 2 i + 11\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(6i+8\right){x}+2i+11$
52000.5-i3 52000.5-i \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.078227276$ $2.156147299$ 4.649633659 \( -\frac{42112}{65} a + \frac{108224}{65} \) \( \bigl[0\) , \( -i + 1\) , \( 0\) , \( 4 i + 9\) , \( -9 i + 5\bigr] \) ${y}^2={x}^{3}+\left(-i+1\right){x}^{2}+\left(4i+9\right){x}-9i+5$
52000.5-i4 52000.5-i \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.078227276$ $1.078073649$ 4.649633659 \( -\frac{9896441706}{142805} a + \frac{2615329822}{142805} \) \( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( 31 i + 83\) , \( 272 i - 129\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(31i+83\right){x}+272i-129$
52000.5-j1 52000.5-j \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.112319589$ 3.112319589 \( -\frac{3752}{65} a - \frac{7136}{65} \) \( \bigl[i + 1\) , \( i + 1\) , \( i + 1\) , \( -2 i - 1\) , \( 3 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-2i-1\right){x}+3i$
52000.5-j2 52000.5-j \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.556159794$ 3.112319589 \( -\frac{109815566}{4225} a + \frac{7969262}{4225} \) \( \bigl[i + 1\) , \( i + 1\) , \( i + 1\) , \( -7 i + 34\) , \( 90 i + 41\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-7i+34\right){x}+90i+41$
52000.5-k1 52000.5-k \(\Q(\sqrt{-1}) \) \( 2^{5} \cdot 5^{3} \cdot 13 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.971655697$ 1.971655697 \( -\frac{1374}{65} a + \frac{116018}{65} \) \( \bigl[i + 1\) , \( -i - 1\) , \( i + 1\) , \( -i - 12\) , \( 2 i + 1\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(-i-12\right){x}+2i+1$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.