Properties

Label 2.0.4.1-52000.5-g4
Base field Q(1)\Q(\sqrt{-1})
Conductor norm 52000 52000
CM no
Base change no
Q-curve no
Torsion order 2 2
Rank 1 1

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field Q(1)\Q(\sqrt{-1})

Generator ii, with minimal polynomial x2+1 x^{2} + 1 ; class number 11.

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
 
Copy content gp:K = nfinit(Polrev([1, 0, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
 

Weierstrass equation

y2+(i+1)xy=x3ix2+(202i134)x+1468i+101{y}^2+\left(i+1\right){x}{y}={x}^{3}-i{x}^{2}+\left(-202i-134\right){x}+1468i+101
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([1,1]),K([0,-1]),K([0,0]),K([-134,-202]),K([101,1468])])
 
Copy content gp:E = ellinit([Polrev([1,1]),Polrev([0,-1]),Polrev([0,0]),Polrev([-134,-202]),Polrev([101,1468])], K);
 
Copy content magma:E := EllipticCurve([K![1,1],K![0,-1],K![0,0],K![-134,-202],K![101,1468]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(4i+8:4i3:1)\left(4 i + 8 : -4 i - 3 : 1\right)0.603639602795063039657256675970774286010.60363960279506303965725667597077428601\infty
(92i+8:254i74:1)\left(\frac{9}{2} i + 8 : -\frac{25}{4} i - \frac{7}{4} : 1\right)0022

Invariants

Conductor: N\frak{N} = (60i220)(60i-220) = (i+1)5(i2)(2i+1)2(3i2)(i+1)^{5}\cdot(-i-2)\cdot(2i+1)^{2}\cdot(-3i-2)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 52000 52000 = 25552132^{5}\cdot5\cdot5^{2}\cdot13
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: Δ\Delta = 181800i412400-181800i-412400
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (181800i412400)(-181800i-412400) = (i+1)6(i2)2(2i+1)10(3i2)(i+1)^{6}\cdot(-i-2)^{2}\cdot(2i+1)^{10}\cdot(-3i-2)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 203125000000 203125000000 = 2652510132^{6}\cdot5^{2}\cdot5^{10}\cdot13
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: jj = 160418065688125i+234134390248125 -\frac{16041806568}{8125} i + \frac{23413439024}{8125}
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 1 1
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: rr = 11
Regulator: Reg(E/K)\mathrm{Reg}(E/K) 0.60363960279506303965725667597077428601 0.60363960279506303965725667597077428601
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) 1.20727920559012607931451335194154857202 1.20727920559012607931451335194154857202
Global period: Ω(E/K)\Omega(E/K) 1.75539284778371904727523794248764166290 1.75539284778371904727523794248764166290
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 16 16  =  222212\cdot2\cdot2^{2}\cdot1
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 22
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 4.2384985655418348845143022586582911597 4.2384985655418348845143022586582911597
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

4.238498566L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/211.7553931.20727916222.0000004.238498566\begin{aligned}4.238498566 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 1.755393 \cdot 1.207279 \cdot 16 } { {2^2 \cdot 2.000000} } \\ & \approx 4.238498566 \end{aligned}

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 4 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(i+1)(i+1) 22 22 IIIIII Additive 11 55 66 00
(i2)(-i-2) 55 22 I2I_{2} Split multiplicative 1-1 11 22 22
(2i+1)(2i+1) 55 44 I4I_{4}^{*} Additive 11 22 1010 44
(3i2)(-3i-2) 1313 11 I1I_{1} Split multiplicative 1-1 11 11 11

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
22 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 52000.5-g consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.