Base field \(\Q(\sqrt{-1}) \)
Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$\left(\frac{9}{2} i + \frac{11}{4} : -\frac{15}{2} i + \frac{89}{8} : 1\right)$ | $1.6213221254952812773202014203020578286$ | $\infty$ |
$\left(-17 i - 4 : 10 i - 7 : 1\right)$ | $0$ | $2$ |
$\left(\frac{21}{2} i + 1 : -\frac{25}{4} i + \frac{17}{4} : 1\right)$ | $0$ | $2$ |
Invariants
Conductor: | $\frak{N}$ | = | \((60i-220)\) | = | \((i+1)^{5}\cdot(-i-2)\cdot(2i+1)^{2}\cdot(-3i-2)\) |
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 52000 \) | = | \(2^{5}\cdot5\cdot5^{2}\cdot13\) |
| |||||
Discriminant: | $\Delta$ | = | $103125000i-175000000$ | ||
Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((103125000i-175000000)\) | = | \((i+1)^{6}\cdot(-i-2)^{8}\cdot(2i+1)^{10}\cdot(-3i-2)^{2}\) |
| |||||
Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 41259765625000000 \) | = | \(2^{6}\cdot5^{8}\cdot5^{10}\cdot13^{2}\) |
| |||||
j-invariant: | $j$ | = | \( -\frac{246826028856}{66015625} i + \frac{291128921792}{66015625} \) | ||
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|||
Mordell-Weil rank: | $r$ | = | \(1\) |
Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 1.6213221254952812773202014203020578286 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 3.2426442509905625546404028406041156572 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 1.06451616264775930482924699238642868682 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 32 \) = \(2\cdot2\cdot2^{2}\cdot2\) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(4\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 3.4518472148962913347169180254891880536 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}3.451847215 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 1.064516 \cdot 3.242644 \cdot 32 } { {4^2 \cdot 2.000000} } \\ & \approx 3.451847215 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $\frak{p}$ of bad reduction.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((i+1)\) | \(2\) | \(2\) | \(III\) | Additive | \(-1\) | \(5\) | \(6\) | \(0\) |
\((-i-2)\) | \(5\) | \(2\) | \(I_{8}\) | Non-split multiplicative | \(1\) | \(1\) | \(8\) | \(8\) |
\((2i+1)\) | \(5\) | \(4\) | \(I_{4}^{*}\) | Additive | \(1\) | \(2\) | \(10\) | \(4\) |
\((-3i-2)\) | \(13\) | \(2\) | \(I_{2}\) | Split multiplicative | \(-1\) | \(1\) | \(2\) | \(2\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2Cs |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2 and 4.
Its isogeny class
52000.5-b
consists of curves linked by isogenies of
degrees dividing 8.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.