Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor norm at most 100000 over imaginary quadratic fields with absolute discriminant 4

Note: The completeness Only modular elliptic curves are included

Refine search


Results (12 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
33800.8-a1 33800.8-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.294552901$ $0.578523154$ 2.995715314 \( \frac{21862400}{28561} a + \frac{29892608}{28561} \) \( \bigl[0\) , \( -i - 1\) , \( 0\) , \( 128 i - 8\) , \( -528 i + 115\bigr] \) ${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(128i-8\right){x}-528i+115$
33800.8-a2 33800.8-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.647276450$ $0.578523154$ 2.995715314 \( -\frac{6308647328}{4826809} a + \frac{9699305648}{4826809} \) \( \bigl[i + 1\) , \( -i - 1\) , \( i + 1\) , \( 145 i + 41\) , \( -48 i - 524\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(145i+41\right){x}-48i-524$
33800.8-b1 33800.8-b \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.127434599$ $0.121241088$ 3.280593557 \( -\frac{12562530471206223672}{536376953125} a - \frac{4337347173715555804}{536376953125} \) \( \bigl[i + 1\) , \( i - 1\) , \( 0\) , \( -16197 i + 857\) , \( 521688 i - 597117\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i-1\right){x}^{2}+\left(-16197i+857\right){x}+521688i-597117$
33800.8-b2 33800.8-b \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.127434599$ $0.121241088$ 3.280593557 \( -\frac{13651818501408057352}{2912260640310125} a - \frac{8703911262017248564}{2912260640310125} \) \( \bigl[i + 1\) , \( i - 1\) , \( 0\) , \( -2497 i - 3293\) , \( -85724 i - 70383\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i-1\right){x}^{2}+\left(-2497i-3293\right){x}-85724i-70383$
33800.8-b3 33800.8-b \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.563717299$ $0.242482177$ 3.280593557 \( \frac{303358645539264}{75418890625} a - \frac{163513993683952}{75418890625} \) \( \bigl[i + 1\) , \( i - 1\) , \( 0\) , \( -987 i + 12\) , \( 8097 i - 10180\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i-1\right){x}^{2}+\left(-987i+12\right){x}+8097i-10180$
33800.8-b4 33800.8-b \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.281858649$ $0.242482177$ 3.280593557 \( -\frac{83684333293568}{101966340125} a - \frac{102316354533376}{101966340125} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( -236 i - 665\) , \( -3091 i - 10247\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(-236i-665\right){x}-3091i-10247$
33800.8-c1 33800.8-c \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.118179007$ $1.397809941$ 3.303835842 \( -\frac{2325317632}{371293} a + \frac{1271875584}{371293} \) \( \bigl[0\) , \( 1\) , \( i + 1\) , \( 29 i - 16\) , \( 79 i + 4\bigr] \) ${y}^2+\left(i+1\right){y}={x}^{3}+{x}^{2}+\left(29i-16\right){x}+79i+4$
33800.8-d1 33800.8-d \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.559385163$ 2.237540653 \( -\frac{58185123}{28561} a + \frac{207521489}{28561} \) \( \bigl[i + 1\) , \( 1\) , \( 0\) , \( -113 i + 179\) , \( 654 i + 891\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-113i+179\right){x}+654i+891$
33800.8-d2 33800.8-d \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \cdot 13^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.118770326$ 2.237540653 \( \frac{389018}{169} a + \frac{1352776}{169} \) \( \bigl[i + 1\) , \( 1\) , \( 0\) , \( -23 i + 49\) , \( -110 i - 61\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-23i+49\right){x}-110i-61$
33800.8-e1 33800.8-e \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.248221662$ $1.384931012$ 4.125238536 \( \frac{10173824}{2197} a - \frac{428574}{2197} \) \( \bigl[i + 1\) , \( i - 1\) , \( i + 1\) , \( 6 i + 29\) , \( -45 i + 23\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i-1\right){x}^{2}+\left(6i+29\right){x}-45i+23$
33800.8-f1 33800.8-f \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.146157372$ $2.457669850$ 4.310478812 \( \frac{2048}{13} a + \frac{6144}{13} \) \( \bigl[0\) , \( -i - 1\) , \( i + 1\) , \( 5 i + 3\) , \( -10 i - 2\bigr] \) ${y}^2+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(5i+3\right){x}-10i-2$
33800.8-g1 33800.8-g \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \cdot 13^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.384931012$ 2.769862024 \( -\frac{10173824}{2197} a - \frac{428574}{2197} \) \( \bigl[i + 1\) , \( -i\) , \( i + 1\) , \( -27 i - 16\) , \( 68 i + 10\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(-27i-16\right){x}+68i+10$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.