Base field \(\Q(\sqrt{-1}) \)
Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{4}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $\left(-\frac{169}{25} i - \frac{867}{25} : -\frac{11034}{125} i + \frac{1563}{125} : 1\right)$ | $1.1274345996395380595464824253836325667$ | $\infty$ |
| $\left(18 i - 5 : 259 i - 247 : 1\right)$ | $0$ | $4$ |
Invariants
| Conductor: | $\frak{N}$ | = | \((26i-182)\) | = | \((i+1)^{3}\cdot(2i+1)^{2}\cdot(-3i-2)\cdot(2i+3)\) |
|
| |||||
| Conductor norm: | $N(\frak{N})$ | = | \( 33800 \) | = | \(2^{3}\cdot5^{2}\cdot13\cdot13\) |
|
| |||||
| Discriminant: | $\Delta$ | = | $-1135330864928i-824446493104$ | ||
| Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((-1135330864928i-824446493104)\) | = | \((i+1)^{8}\cdot(2i+1)^{9}\cdot(-3i-2)^{12}\cdot(2i+3)^{2}\) |
|
| |||||
| Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 1968688192849644500000000 \) | = | \(2^{8}\cdot5^{9}\cdot13^{12}\cdot13^{2}\) |
|
| |||||
| j-invariant: | $j$ | = | \( -\frac{13651818501408057352}{2912260640310125} i - \frac{8703911262017248564}{2912260640310125} \) | ||
|
| |||||
| Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
|
| |||||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | ||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|
|||
| Mordell-Weil rank: | $r$ | = | \(1\) |
| Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 1.1274345996395380595464824253836325667 \) |
| Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 2.2548691992790761190929648507672651334 \) |
| Global period: | $\Omega(E/K)$ | ≈ | \( 0.242482177299293455263272043658297764680 \) |
| Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 192 \) = \(2\cdot2^{2}\cdot( 2^{2} \cdot 3 )\cdot2\) |
| Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(4\) |
| Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 3.2805935577978288103520136333972200211 \) |
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}3.280593558 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 0.242482 \cdot 2.254869 \cdot 192 } { {4^2 \cdot 2.000000} } \\ & \approx 3.280593558 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $\frak{p}$ of bad reduction.
| $\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
|---|---|---|---|---|---|---|---|---|
| \((i+1)\) | \(2\) | \(2\) | \(I_{1}^{*}\) | Additive | \(1\) | \(3\) | \(8\) | \(0\) |
| \((2i+1)\) | \(5\) | \(4\) | \(I_{3}^{*}\) | Additive | \(1\) | \(2\) | \(9\) | \(3\) |
| \((-3i-2)\) | \(13\) | \(12\) | \(I_{12}\) | Split multiplicative | \(-1\) | \(1\) | \(12\) | \(12\) |
| \((2i+3)\) | \(13\) | \(2\) | \(I_{2}\) | Split multiplicative | \(-1\) | \(1\) | \(2\) | \(2\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2 and 4.
Its isogeny class
33800.8-b
consists of curves linked by isogenies of
degrees dividing 4.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.