Properties

Label 2.0.4.1-33800.8-a2
Base field \(\Q(\sqrt{-1}) \)
Conductor norm \( 33800 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
 
Copy content gp:K = nfinit(Polrev([1, 0, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(145i+41\right){x}-48i-524\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([1,1]),K([-1,-1]),K([1,1]),K([41,145]),K([-524,-48])])
 
Copy content gp:E = ellinit([Polrev([1,1]),Polrev([-1,-1]),Polrev([1,1]),Polrev([41,145]),Polrev([-524,-48])], K);
 
Copy content magma:E := EllipticCurve([K![1,1],K![-1,-1],K![1,1],K![41,145],K![-524,-48]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-8 i + 24 : 37 i - 127 : 1\right)$$0.64727645059846854706998539757055804289$$\infty$
$\left(-\frac{7}{2} i + 1 : \frac{3}{4} i - \frac{11}{4} : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((26i-182)\) = \((i+1)^{3}\cdot(2i+1)^{2}\cdot(-3i-2)\cdot(2i+3)\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 33800 \) = \(2^{3}\cdot5^{2}\cdot13\cdot13\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(K, ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $155021672i+38208196$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((155021672i+38208196)\) = \((i+1)^{4}\cdot(2i+1)^{9}\cdot(-3i-2)^{6}\cdot(2i+3)^{2}\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 25491585031250000 \) = \(2^{4}\cdot5^{9}\cdot13^{6}\cdot13^{2}\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( -\frac{6308647328}{4826809} i + \frac{9699305648}{4826809} \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 0.64727645059846854706998539757055804289 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 1.29455290119693709413997079514111608578 \)
Global period: $\Omega(E/K)$ \( 1.15704630972654344903985832123408266006 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 16 \)  =  \(2\cdot2\cdot2\cdot2\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(2\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 2.9957153141514133533600326957774735222 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$$\begin{aligned}2.995715314 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 1.157046 \cdot 1.294553 \cdot 16 } { {2^2 \cdot 2.000000} } \\ & \approx 2.995715314 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 4 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((i+1)\) \(2\) \(2\) \(III\) Additive \(-1\) \(3\) \(4\) \(0\)
\((2i+1)\) \(5\) \(2\) \(III^{*}\) Additive \(-1\) \(2\) \(9\) \(0\)
\((-3i-2)\) \(13\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)
\((2i+3)\) \(13\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 33800.8-a consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.