Learn more

Refine search


Results (1-50 of 104 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
25600.2-a1 25600.2-a Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 22 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.3127214900.312721490 3.2319144713.231914471 4.042756438 345625 -\frac{3456}{25} [0 \bigl[0 , 0 0 , 0 0 , 2 2 , 4i] -4 i\bigr] y2=x3+2x4i{y}^2={x}^{3}+2{x}-4i
25600.2-a2 25600.2-a Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 22 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.3127214900.312721490 1.6159572351.615957235 4.042756438 12579624625a+2240568625 -\frac{12579624}{625} a + \frac{2240568}{625} [0 \bigl[0 , 0 0 , 0 0 , 30i8 30 i - 8 , 60i28] -60 i - 28\bigr] y2=x3+(30i8)x60i28{y}^2={x}^{3}+\left(30i-8\right){x}-60i-28
25600.2-a3 25600.2-a Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 22 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.3127214900.312721490 1.6159572351.615957235 4.042756438 12579624625a+2240568625 \frac{12579624}{625} a + \frac{2240568}{625} [0 \bigl[0 , 0 0 , 0 0 , 30i8 -30 i - 8 , 60i+28] -60 i + 28\bigr] y2=x3+(30i8)x60i+28{y}^2={x}^{3}+\left(-30i-8\right){x}-60i+28
25600.2-a4 25600.2-a Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 22 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.2508859601.250885960 3.2319144713.231914471 4.042756438 18982085 \frac{1898208}{5} [0 \bigl[0 , 0 0 , 0 0 , 13 -13 , 18] 18\bigr] y2=x313x+18{y}^2={x}^{3}-13{x}+18
25600.2-b1 25600.2-b Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.8978711930.897871193 1.795742386 324134216390625a1619282312390625 -\frac{324134216}{390625} a - \frac{1619282312}{390625} [0 \bigl[0 , i -i , 0 0 , 70i+5 70 i + 5 , 159i+238] 159 i + 238\bigr] y2=x3ix2+(70i+5)x+159i+238{y}^2={x}^{3}-i{x}^{2}+\left(70i+5\right){x}+159i+238
25600.2-b2 25600.2-b Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.8978711930.897871193 1.795742386 324134216390625a1619282312390625 \frac{324134216}{390625} a - \frac{1619282312}{390625} [0 \bigl[0 , i -i , 0 0 , 70i+5 -70 i + 5 , 159i238] 159 i - 238\bigr] y2=x3ix2+(70i+5)x+159i238{y}^2={x}^{3}-i{x}^{2}+\left(-70i+5\right){x}+159i-238
25600.2-b3 25600.2-b Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.7957423861.795742386 1.795742386 1557376625 -\frac{1557376}{625} [0 \bigl[0 , i -i , 0 0 , 15 15 , 25i] 25 i\bigr] y2=x3ix2+15x+25i{y}^2={x}^{3}-i{x}^{2}+15{x}+25i
25600.2-b4 25600.2-b Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.7957423861.795742386 1.795742386 25217916825 \frac{252179168}{25} [0 \bigl[0 , 1 -1 , 0 0 , 66 -66 , 230] 230\bigr] y2=x3x266x+230{y}^2={x}^{3}-{x}^{2}-66{x}+230
25600.2-c1 25600.2-c Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.9348414521.934841452 1.934841452 119136625a+1036352625 \frac{119136}{625} a + \frac{1036352}{625} [0 \bigl[0 , i1 i - 1 , 0 0 , 4i+12 -4 i + 12 , 0] 0\bigr] y2=x3+(i1)x2+(4i+12)x{y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(-4i+12\right){x}
25600.2-c2 25600.2-c Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.9674207260.967420726 1.934841452 79113756390625a+695553908390625 -\frac{79113756}{390625} a + \frac{695553908}{390625} [0 \bigl[0 , i1 i - 1 , 0 0 , 16i48 16 i - 48 , 64i+32] -64 i + 32\bigr] y2=x3+(i1)x2+(16i48)x64i+32{y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(16i-48\right){x}-64i+32
25600.2-c3 25600.2-c Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 3.8696829043.869682904 1.934841452 275187225a+232345625 -\frac{2751872}{25} a + \frac{2323456}{25} [0 \bigl[0 , i1 i - 1 , 0 0 , 4i+7 -4 i + 7 , 10i+4] 10 i + 4\bigr] y2=x3+(i1)x2+(4i+7)x+10i+4{y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(-4i+7\right){x}+10i+4
25600.2-c4 25600.2-c Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.9674207260.967420726 1.934841452 286742876625a+195690268625 \frac{286742876}{625} a + \frac{195690268}{625} [0 \bigl[0 , i1 i - 1 , 0 0 , 24i+152 -24 i + 152 , 656i208] -656 i - 208\bigr] y2=x3+(i1)x2+(24i+152)x656i208{y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(-24i+152\right){x}-656i-208
25600.2-d1 25600.2-d Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.9348414521.934841452 1.934841452 119136625a+1036352625 -\frac{119136}{625} a + \frac{1036352}{625} [0 \bigl[0 , i1 -i - 1 , 0 0 , 4i+12 4 i + 12 , 0] 0\bigr] y2=x3+(i1)x2+(4i+12)x{y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(4i+12\right){x}
25600.2-d2 25600.2-d Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.9674207260.967420726 1.934841452 79113756390625a+695553908390625 \frac{79113756}{390625} a + \frac{695553908}{390625} [0 \bigl[0 , i1 -i - 1 , 0 0 , 16i48 -16 i - 48 , 64i+32] 64 i + 32\bigr] y2=x3+(i1)x2+(16i48)x+64i+32{y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(-16i-48\right){x}+64i+32
25600.2-d3 25600.2-d Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 3.8696829043.869682904 1.934841452 275187225a+232345625 \frac{2751872}{25} a + \frac{2323456}{25} [0 \bigl[0 , i1 -i - 1 , 0 0 , 4i+7 4 i + 7 , 10i+4] -10 i + 4\bigr] y2=x3+(i1)x2+(4i+7)x10i+4{y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(4i+7\right){x}-10i+4
25600.2-d4 25600.2-d Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.9674207260.967420726 1.934841452 286742876625a+195690268625 -\frac{286742876}{625} a + \frac{195690268}{625} [0 \bigl[0 , i1 -i - 1 , 0 0 , 24i+152 24 i + 152 , 656i208] 656 i - 208\bigr] y2=x3+(i1)x2+(24i+152)x+656i208{y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(24i+152\right){x}+656i-208
25600.2-e1 25600.2-e Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.0848665681.084866568 3.1273604973.127360497 3.392768851 421696625a+663328625 \frac{421696}{625} a + \frac{663328}{625} [0 \bigl[0 , 1 -1 , 0 0 , 4i+2 4 i + 2 , 4i2] -4 i - 2\bigr] y2=x3x2+(4i+2)x4i2{y}^2={x}^{3}-{x}^{2}+\left(4i+2\right){x}-4i-2
25600.2-e2 25600.2-e Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.5424332840.542433284 3.1273604973.127360497 3.392768851 2995225a+106245 -\frac{29952}{25} a + \frac{10624}{5} [0 \bigl[0 , i i , 0 0 , 4i+3 4 i + 3 , 3i4] 3 i - 4\bigr] y2=x3+ix2+(4i+3)x+3i4{y}^2={x}^{3}+i{x}^{2}+\left(4i+3\right){x}+3i-4
25600.2-e3 25600.2-e Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.2712166420.271216642 1.5636802481.563680248 3.392768851 18091224625a+10253768625 \frac{18091224}{625} a + \frac{10253768}{625} [0 \bigl[0 , i i , 0 0 , 34i+13 34 i + 13 , 25i+70] 25 i + 70\bigr] y2=x3+ix2+(34i+13)x+25i+70{y}^2={x}^{3}+i{x}^{2}+\left(34i+13\right){x}+25i+70
25600.2-e4 25600.2-e Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.0848665681.084866568 1.5636802481.563680248 3.392768851 166911925a+3110485 -\frac{16691192}{5} a + \frac{311048}{5} [0 \bigl[0 , i i , 0 0 , 54i+53 54 i + 53 , 113i254] 113 i - 254\bigr] y2=x3+ix2+(54i+53)x+113i254{y}^2={x}^{3}+i{x}^{2}+\left(54i+53\right){x}+113i-254
25600.2-f1 25600.2-f Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.6890271161.689027116 1.0165983931.016598393 3.434124507 64921601625a49457280825 -\frac{649216016}{25} a - \frac{494572808}{25} [0 \bigl[0 , 1 1 , 0 0 , 106i213 -106 i - 213 , 938i1161] -938 i - 1161\bigr] y2=x3+x2+(106i213)x938i1161{y}^2={x}^{3}+{x}^{2}+\left(-106i-213\right){x}-938i-1161
25600.2-f2 25600.2-f Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.8445135580.844513558 1.0165983931.016598393 3.434124507 64921601625a49457280825 \frac{649216016}{25} a - \frac{494572808}{25} [0 \bigl[0 , i -i , 0 0 , 106i+213 -106 i + 213 , 1161i938] -1161 i - 938\bigr] y2=x3ix2+(106i+213)x1161i938{y}^2={x}^{3}-i{x}^{2}+\left(-106i+213\right){x}-1161i-938
25600.2-f3 25600.2-f Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.4222567790.422256779 2.0331967872.033196787 3.434124507 3181056625a1129792625 -\frac{3181056}{625} a - \frac{1129792}{625} [0 \bigl[0 , i -i , 0 0 , 6i+13 -6 i + 13 , 21i18] -21 i - 18\bigr] y2=x3ix2+(6i+13)x21i18{y}^2={x}^{3}-i{x}^{2}+\left(-6i+13\right){x}-21i-18
25600.2-f4 25600.2-f Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.8445135580.844513558 2.0331967872.033196787 3.434124507 3181056625a1129792625 \frac{3181056}{625} a - \frac{1129792}{625} [0 \bigl[0 , 1 1 , 0 0 , 6i13 -6 i - 13 , 18i21] -18 i - 21\bigr] y2=x3+x2+(6i13)x18i21{y}^2={x}^{3}+{x}^{2}+\left(-6i-13\right){x}-18i-21
25600.2-f5 25600.2-f Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.6890271161.689027116 1.0165983931.016598393 3.434124507 256910704390625a293256872390625 -\frac{256910704}{390625} a - \frac{293256872}{390625} [0 \bigl[0 , 1 1 , 0 0 , 26i+27 -26 i + 27 , 34i129] -34 i - 129\bigr] y2=x3+x2+(26i+27)x34i129{y}^2={x}^{3}+{x}^{2}+\left(-26i+27\right){x}-34i-129
25600.2-f6 25600.2-f Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.2111283890.211128389 1.0165983931.016598393 3.434124507 256910704390625a293256872390625 \frac{256910704}{390625} a - \frac{293256872}{390625} [0 \bigl[0 , i i , 0 0 , 26i27 -26 i - 27 , 129i+34] 129 i + 34\bigr] y2=x3+ix2+(26i27)x+129i+34{y}^2={x}^{3}+i{x}^{2}+\left(-26i-27\right){x}+129i+34
25600.2-g1 25600.2-g Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.2872526870.287252687 3.1273604973.127360497 3.593370833 421696625a+663328625 -\frac{421696}{625} a + \frac{663328}{625} [0 \bigl[0 , i i , 0 0 , 4i2 4 i - 2 , 2i4] -2 i - 4\bigr] y2=x3+ix2+(4i2)x2i4{y}^2={x}^{3}+i{x}^{2}+\left(4i-2\right){x}-2i-4
25600.2-g2 25600.2-g Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.5745053750.574505375 3.1273604973.127360497 3.593370833 2995225a+106245 \frac{29952}{25} a + \frac{10624}{5} [0 \bigl[0 , 1 1 , 0 0 , 4i3 4 i - 3 , 4i3] 4 i - 3\bigr] y2=x3+x2+(4i3)x+4i3{y}^2={x}^{3}+{x}^{2}+\left(4i-3\right){x}+4i-3
25600.2-g3 25600.2-g Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.1490107511.149010751 1.5636802481.563680248 3.593370833 18091224625a+10253768625 -\frac{18091224}{625} a + \frac{10253768}{625} [0 \bigl[0 , 1 1 , 0 0 , 34i13 34 i - 13 , 70i25] -70 i - 25\bigr] y2=x3+x2+(34i13)x70i25{y}^2={x}^{3}+{x}^{2}+\left(34i-13\right){x}-70i-25
25600.2-g4 25600.2-g Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.1490107511.149010751 1.5636802481.563680248 3.593370833 166911925a+3110485 \frac{16691192}{5} a + \frac{311048}{5} [0 \bigl[0 , 1 1 , 0 0 , 54i53 54 i - 53 , 254i113] 254 i - 113\bigr] y2=x3+x2+(54i53)x+254i113{y}^2={x}^{3}+{x}^{2}+\left(54i-53\right){x}+254i-113
25600.2-h1 25600.2-h Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.6438842280.643884228 2.9023370712.902337071 3.737538130 6425 -\frac{64}{25} [0 \bigl[0 , i1 i - 1 , 0 0 , 0 0 , 4i4] -4 i - 4\bigr] y2=x3+(i1)x24i4{y}^2={x}^{3}+\left(i-1\right){x}^{2}-4i-4
25600.2-h2 25600.2-h Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.3219421140.321942114 1.4511685351.451168535 3.737538130 10307536625a+24381448625 -\frac{10307536}{625} a + \frac{24381448}{625} [0 \bigl[0 , i1 i - 1 , 0 0 , 20i40 -20 i - 40 , 76i68] -76 i - 68\bigr] y2=x3+(i1)x2+(20i40)x76i68{y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(-20i-40\right){x}-76i-68
25600.2-h3 25600.2-h Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.2877684561.287768456 1.4511685351.451168535 3.737538130 10307536625a+24381448625 \frac{10307536}{625} a + \frac{24381448}{625} [0 \bigl[0 , i1 i - 1 , 0 0 , 20i+40 -20 i + 40 , 68i76] -68 i - 76\bigr] y2=x3+(i1)x2+(20i+40)x68i76{y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(-20i+40\right){x}-68i-76
25600.2-h4 25600.2-h Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.2877684561.287768456 2.9023370712.902337071 3.737538130 4389765 \frac{438976}{5} [0 \bigl[0 , i+1 i + 1 , 0 0 , 12i -12 i , 8i8] 8 i - 8\bigr] y2=x3+(i+1)x212ix+8i8{y}^2={x}^{3}+\left(i+1\right){x}^{2}-12i{x}+8i-8
25600.2-i1 25600.2-i Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.1354536231.135453623 2.270907247 59648644625a119744792625 -\frac{59648644}{625} a - \frac{119744792}{625} [0 \bigl[0 , i+1 i + 1 , 0 0 , 88i+40 88 i + 40 , 8i376] -8 i - 376\bigr] y2=x3+(i+1)x2+(88i+40)x8i376{y}^2={x}^{3}+\left(i+1\right){x}^{2}+\left(88i+40\right){x}-8i-376
25600.2-i2 25600.2-i Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.1354536231.135453623 2.270907247 59648644625a119744792625 \frac{59648644}{625} a - \frac{119744792}{625} [0 \bigl[0 , i+1 i + 1 , 0 0 , 88i40 88 i - 40 , 376i+8] 376 i + 8\bigr] y2=x3+(i+1)x2+(88i40)x+376i+8{y}^2={x}^{3}+\left(i+1\right){x}^{2}+\left(88i-40\right){x}+376i+8
25600.2-i3 25600.2-i Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.3784845410.378484541 2.270907247 893935595564244140625a1336401187352244140625 -\frac{893935595564}{244140625} a - \frac{1336401187352}{244140625} [0 \bigl[0 , i+1 i + 1 , 0 0 , 8i+440 8 i + 440 , 3784i+8] -3784 i + 8\bigr] y2=x3+(i+1)x2+(8i+440)x3784i+8{y}^2={x}^{3}+\left(i+1\right){x}^{2}+\left(8i+440\right){x}-3784i+8
25600.2-i4 25600.2-i Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.3784845410.378484541 2.270907247 893935595564244140625a1336401187352244140625 \frac{893935595564}{244140625} a - \frac{1336401187352}{244140625} [0 \bigl[0 , i+1 i + 1 , 0 0 , 8i440 8 i - 440 , 8i+3784] -8 i + 3784\bigr] y2=x3+(i+1)x2+(8i440)x8i+3784{y}^2={x}^{3}+\left(i+1\right){x}^{2}+\left(8i-440\right){x}-8i+3784
25600.2-i5 25600.2-i Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.7569690820.756969082 2.270907247 2072046415625 -\frac{20720464}{15625} [0 \bigl[0 , i+1 i + 1 , 0 0 , 72i -72 i , 280i+280] -280 i + 280\bigr] y2=x3+(i+1)x272ix280i+280{y}^2={x}^{3}+\left(i+1\right){x}^{2}-72i{x}-280i+280
25600.2-i6 25600.2-i Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.2709072472.270907247 2.270907247 2129625 \frac{21296}{25} [0 \bigl[0 , i+1 i + 1 , 0 0 , 8i 8 i , 8i8] 8 i - 8\bigr] y2=x3+(i+1)x2+8ix+8i8{y}^2={x}^{3}+\left(i+1\right){x}^{2}+8i{x}+8i-8
25600.2-i7 25600.2-i Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 4.5418144954.541814495 2.270907247 163845 \frac{16384}{5} [0 \bigl[0 , i+1 i + 1 , 0 0 , 2i -2 i , 0] 0\bigr] y2=x3+(i+1)x22ix{y}^2={x}^{3}+\left(i+1\right){x}^{2}-2i{x}
25600.2-i8 25600.2-i Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.5139381651.513938165 2.270907247 488095744125 \frac{488095744}{125} [0 \bigl[0 , i+1 i + 1 , 0 0 , 82i -82 i , 232i+232] -232 i + 232\bigr] y2=x3+(i+1)x282ix232i+232{y}^2={x}^{3}+\left(i+1\right){x}^{2}-82i{x}-232i+232
25600.2-j1 25600.2-j Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.5297801300.529780130 2.119120521 35999730234390625a51700389912390625 -\frac{35999730234}{390625} a - \frac{51700389912}{390625} [0 \bigl[0 , 0 0 , 0 0 , 346i+240 -346 i + 240 , 404i+3316] 404 i + 3316\bigr] y2=x3+(346i+240)x+404i+3316{y}^2={x}^{3}+\left(-346i+240\right){x}+404i+3316
25600.2-j2 25600.2-j Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.5297801300.529780130 2.119120521 35999730234390625a51700389912390625 \frac{35999730234}{390625} a - \frac{51700389912}{390625} [0 \bigl[0 , 0 0 , 0 0 , 346i240 -346 i - 240 , 3316i+404] 3316 i + 404\bigr] y2=x3+(346i240)x+3316i+404{y}^2={x}^{3}+\left(-346i-240\right){x}+3316i+404
25600.2-j3 25600.2-j Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.0595602601.059560260 2.119120521 237276625 \frac{237276}{625} [0 \bigl[0 , 0 0 , 0 0 , 26i -26 i , 68i+68] 68 i + 68\bigr] y2=x326ix+68i+68{y}^2={x}^{3}-26i{x}+68i+68
25600.2-j4 25600.2-j Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.2648900650.264890065 2.119120521 22845545233191152587890625a+135893651813613152587890625 -\frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} [0 \bigl[0 , 0 0 , 0 0 , 266i480 -266 i - 480 , 2868i3852] 2868 i - 3852\bigr] y2=x3+(266i480)x+2868i3852{y}^2={x}^{3}+\left(-266i-480\right){x}+2868i-3852
25600.2-j5 25600.2-j Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.2648900650.264890065 2.119120521 22845545233191152587890625a+135893651813613152587890625 \frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} [0 \bigl[0 , 0 0 , 0 0 , 266i+480 -266 i + 480 , 3852i+2868] -3852 i + 2868\bigr] y2=x3+(266i+480)x3852i+2868{y}^2={x}^{3}+\left(-266i+480\right){x}-3852i+2868
25600.2-j6 25600.2-j Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.1191205212.119120521 2.119120521 14817625 \frac{148176}{25} [0 \bigl[0 , 0 0 , 0 0 , 14i 14 i , 12i+12] 12 i + 12\bigr] y2=x3+14ix+12i+12{y}^2={x}^{3}+14i{x}+12i+12
25600.2-j7 25600.2-j Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 4.2382410434.238241043 2.119120521 552965 \frac{55296}{5} [0 \bigl[0 , 0 0 , 0 0 , 4i 4 i , 2i2] -2 i - 2\bigr] y2=x3+4ix2i2{y}^2={x}^{3}+4i{x}-2i-2
25600.2-j8 25600.2-j Q(1)\Q(\sqrt{-1}) 21052 2^{10} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.0595602601.059560260 2.119120521 1323046445 \frac{132304644}{5} [0 \bigl[0 , 0 0 , 0 0 , 214i 214 i , 852i+852] 852 i + 852\bigr] y2=x3+214ix+852i+852{y}^2={x}^{3}+214i{x}+852i+852
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.