Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
25600.2-a1 |
25600.2-a |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{16} \cdot 5^{4} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$0.312721490$ |
$3.231914471$ |
4.042756438 |
\( -\frac{3456}{25} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 2\) , \( -4 i\bigr] \) |
${y}^2={x}^{3}+2{x}-4i$ |
25600.2-a2 |
25600.2-a |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{23} \cdot 5^{5} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.312721490$ |
$1.615957235$ |
4.042756438 |
\( -\frac{12579624}{625} a + \frac{2240568}{625} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 30 i - 8\) , \( -60 i - 28\bigr] \) |
${y}^2={x}^{3}+\left(30i-8\right){x}-60i-28$ |
25600.2-a3 |
25600.2-a |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{23} \cdot 5^{5} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.312721490$ |
$1.615957235$ |
4.042756438 |
\( \frac{12579624}{625} a + \frac{2240568}{625} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -30 i - 8\) , \( -60 i + 28\bigr] \) |
${y}^2={x}^{3}+\left(-30i-8\right){x}-60i+28$ |
25600.2-a4 |
25600.2-a |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{14} \cdot 5^{2} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 1 \) |
$1.250885960$ |
$3.231914471$ |
4.042756438 |
\( \frac{1898208}{5} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -13\) , \( 18\bigr] \) |
${y}^2={x}^{3}-13{x}+18$ |
25600.2-b1 |
25600.2-b |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{23} \cdot 5^{10} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$0.897871193$ |
1.795742386 |
\( -\frac{324134216}{390625} a - \frac{1619282312}{390625} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( 70 i + 5\) , \( 159 i + 238\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+\left(70i+5\right){x}+159i+238$ |
25600.2-b2 |
25600.2-b |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{23} \cdot 5^{10} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$0.897871193$ |
1.795742386 |
\( \frac{324134216}{390625} a - \frac{1619282312}{390625} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( -70 i + 5\) , \( 159 i - 238\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+\left(-70i+5\right){x}+159i-238$ |
25600.2-b3 |
25600.2-b |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{16} \cdot 5^{8} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$1$ |
$1.795742386$ |
1.795742386 |
\( -\frac{1557376}{625} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( 15\) , \( 25 i\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+15{x}+25i$ |
25600.2-b4 |
25600.2-b |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{14} \cdot 5^{4} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$1.795742386$ |
1.795742386 |
\( \frac{252179168}{25} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -66\) , \( 230\bigr] \) |
${y}^2={x}^{3}-{x}^{2}-66{x}+230$ |
25600.2-c1 |
25600.2-c |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{20} \cdot 5^{6} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$1$ |
$1.934841452$ |
1.934841452 |
\( \frac{119136}{625} a + \frac{1036352}{625} \) |
\( \bigl[0\) , \( i - 1\) , \( 0\) , \( -4 i + 12\) , \( 0\bigr] \) |
${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(-4i+12\right){x}$ |
25600.2-c2 |
25600.2-c |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{25} \cdot 5^{9} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$0.967420726$ |
1.934841452 |
\( -\frac{79113756}{390625} a + \frac{695553908}{390625} \) |
\( \bigl[0\) , \( i - 1\) , \( 0\) , \( 16 i - 48\) , \( -64 i + 32\bigr] \) |
${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(16i-48\right){x}-64i+32$ |
25600.2-c3 |
25600.2-c |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{10} \cdot 5^{3} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$3.869682904$ |
1.934841452 |
\( -\frac{2751872}{25} a + \frac{2323456}{25} \) |
\( \bigl[0\) , \( i - 1\) , \( 0\) , \( -4 i + 7\) , \( 10 i + 4\bigr] \) |
${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(-4i+7\right){x}+10i+4$ |
25600.2-c4 |
25600.2-c |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{25} \cdot 5^{6} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$0.967420726$ |
1.934841452 |
\( \frac{286742876}{625} a + \frac{195690268}{625} \) |
\( \bigl[0\) , \( i - 1\) , \( 0\) , \( -24 i + 152\) , \( -656 i - 208\bigr] \) |
${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(-24i+152\right){x}-656i-208$ |
25600.2-d1 |
25600.2-d |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{20} \cdot 5^{6} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$1$ |
$1.934841452$ |
1.934841452 |
\( -\frac{119136}{625} a + \frac{1036352}{625} \) |
\( \bigl[0\) , \( -i - 1\) , \( 0\) , \( 4 i + 12\) , \( 0\bigr] \) |
${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(4i+12\right){x}$ |
25600.2-d2 |
25600.2-d |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{25} \cdot 5^{9} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$0.967420726$ |
1.934841452 |
\( \frac{79113756}{390625} a + \frac{695553908}{390625} \) |
\( \bigl[0\) , \( -i - 1\) , \( 0\) , \( -16 i - 48\) , \( 64 i + 32\bigr] \) |
${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(-16i-48\right){x}+64i+32$ |
25600.2-d3 |
25600.2-d |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{10} \cdot 5^{3} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$3.869682904$ |
1.934841452 |
\( \frac{2751872}{25} a + \frac{2323456}{25} \) |
\( \bigl[0\) , \( -i - 1\) , \( 0\) , \( 4 i + 7\) , \( -10 i + 4\bigr] \) |
${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(4i+7\right){x}-10i+4$ |
25600.2-d4 |
25600.2-d |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{25} \cdot 5^{6} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$0.967420726$ |
1.934841452 |
\( -\frac{286742876}{625} a + \frac{195690268}{625} \) |
\( \bigl[0\) , \( -i - 1\) , \( 0\) , \( 24 i + 152\) , \( 656 i - 208\bigr] \) |
${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(24i+152\right){x}+656i-208$ |
25600.2-e1 |
25600.2-e |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{14} \cdot 5^{5} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1.084866568$ |
$3.127360497$ |
3.392768851 |
\( \frac{421696}{625} a + \frac{663328}{625} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( 4 i + 2\) , \( -4 i - 2\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(4i+2\right){x}-4i-2$ |
25600.2-e2 |
25600.2-e |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{16} \cdot 5^{4} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$0.542433284$ |
$3.127360497$ |
3.392768851 |
\( -\frac{29952}{25} a + \frac{10624}{5} \) |
\( \bigl[0\) , \( i\) , \( 0\) , \( 4 i + 3\) , \( 3 i - 4\bigr] \) |
${y}^2={x}^{3}+i{x}^{2}+\left(4i+3\right){x}+3i-4$ |
25600.2-e3 |
25600.2-e |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{23} \cdot 5^{5} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.271216642$ |
$1.563680248$ |
3.392768851 |
\( \frac{18091224}{625} a + \frac{10253768}{625} \) |
\( \bigl[0\) , \( i\) , \( 0\) , \( 34 i + 13\) , \( 25 i + 70\bigr] \) |
${y}^2={x}^{3}+i{x}^{2}+\left(34i+13\right){x}+25i+70$ |
25600.2-e4 |
25600.2-e |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{23} \cdot 5^{2} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1.084866568$ |
$1.563680248$ |
3.392768851 |
\( -\frac{16691192}{5} a + \frac{311048}{5} \) |
\( \bigl[0\) , \( i\) , \( 0\) , \( 54 i + 53\) , \( 113 i - 254\bigr] \) |
${y}^2={x}^{3}+i{x}^{2}+\left(54i+53\right){x}+113i-254$ |
25600.2-f1 |
25600.2-f |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{24} \cdot 5^{3} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1.689027116$ |
$1.016598393$ |
3.434124507 |
\( -\frac{649216016}{25} a - \frac{494572808}{25} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -106 i - 213\) , \( -938 i - 1161\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(-106i-213\right){x}-938i-1161$ |
25600.2-f2 |
25600.2-f |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{24} \cdot 5^{3} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.844513558$ |
$1.016598393$ |
3.434124507 |
\( \frac{649216016}{25} a - \frac{494572808}{25} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( -106 i + 213\) , \( -1161 i - 938\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+\left(-106i+213\right){x}-1161i-938$ |
25600.2-f3 |
25600.2-f |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{18} \cdot 5^{6} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$0.422256779$ |
$2.033196787$ |
3.434124507 |
\( -\frac{3181056}{625} a - \frac{1129792}{625} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( -6 i + 13\) , \( -21 i - 18\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+\left(-6i+13\right){x}-21i-18$ |
25600.2-f4 |
25600.2-f |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{18} \cdot 5^{6} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$0.844513558$ |
$2.033196787$ |
3.434124507 |
\( \frac{3181056}{625} a - \frac{1129792}{625} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -6 i - 13\) , \( -18 i - 21\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(-6i-13\right){x}-18i-21$ |
25600.2-f5 |
25600.2-f |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{24} \cdot 5^{9} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1.689027116$ |
$1.016598393$ |
3.434124507 |
\( -\frac{256910704}{390625} a - \frac{293256872}{390625} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -26 i + 27\) , \( -34 i - 129\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(-26i+27\right){x}-34i-129$ |
25600.2-f6 |
25600.2-f |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{24} \cdot 5^{9} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$0.211128389$ |
$1.016598393$ |
3.434124507 |
\( \frac{256910704}{390625} a - \frac{293256872}{390625} \) |
\( \bigl[0\) , \( i\) , \( 0\) , \( -26 i - 27\) , \( 129 i + 34\bigr] \) |
${y}^2={x}^{3}+i{x}^{2}+\left(-26i-27\right){x}+129i+34$ |
25600.2-g1 |
25600.2-g |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{14} \cdot 5^{5} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.287252687$ |
$3.127360497$ |
3.593370833 |
\( -\frac{421696}{625} a + \frac{663328}{625} \) |
\( \bigl[0\) , \( i\) , \( 0\) , \( 4 i - 2\) , \( -2 i - 4\bigr] \) |
${y}^2={x}^{3}+i{x}^{2}+\left(4i-2\right){x}-2i-4$ |
25600.2-g2 |
25600.2-g |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{16} \cdot 5^{4} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$0.574505375$ |
$3.127360497$ |
3.593370833 |
\( \frac{29952}{25} a + \frac{10624}{5} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( 4 i - 3\) , \( 4 i - 3\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(4i-3\right){x}+4i-3$ |
25600.2-g3 |
25600.2-g |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{23} \cdot 5^{5} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1.149010751$ |
$1.563680248$ |
3.593370833 |
\( -\frac{18091224}{625} a + \frac{10253768}{625} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( 34 i - 13\) , \( -70 i - 25\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(34i-13\right){x}-70i-25$ |
25600.2-g4 |
25600.2-g |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{23} \cdot 5^{2} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1.149010751$ |
$1.563680248$ |
3.593370833 |
\( \frac{16691192}{5} a + \frac{311048}{5} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( 54 i - 53\) , \( 254 i - 113\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(54i-53\right){x}+254i-113$ |
25600.2-h1 |
25600.2-h |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{18} \cdot 5^{4} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$0.643884228$ |
$2.902337071$ |
3.737538130 |
\( -\frac{64}{25} \) |
\( \bigl[0\) , \( i - 1\) , \( 0\) , \( 0\) , \( -4 i - 4\bigr] \) |
${y}^2={x}^{3}+\left(i-1\right){x}^{2}-4i-4$ |
25600.2-h2 |
25600.2-h |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{24} \cdot 5^{5} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.321942114$ |
$1.451168535$ |
3.737538130 |
\( -\frac{10307536}{625} a + \frac{24381448}{625} \) |
\( \bigl[0\) , \( i - 1\) , \( 0\) , \( -20 i - 40\) , \( -76 i - 68\bigr] \) |
${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(-20i-40\right){x}-76i-68$ |
25600.2-h3 |
25600.2-h |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{24} \cdot 5^{5} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1.287768456$ |
$1.451168535$ |
3.737538130 |
\( \frac{10307536}{625} a + \frac{24381448}{625} \) |
\( \bigl[0\) , \( i - 1\) , \( 0\) , \( -20 i + 40\) , \( -68 i - 76\bigr] \) |
${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(-20i+40\right){x}-68i-76$ |
25600.2-h4 |
25600.2-h |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{18} \cdot 5^{2} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1.287768456$ |
$2.902337071$ |
3.737538130 |
\( \frac{438976}{5} \) |
\( \bigl[0\) , \( i + 1\) , \( 0\) , \( -12 i\) , \( 8 i - 8\bigr] \) |
${y}^2={x}^{3}+\left(i+1\right){x}^{2}-12i{x}+8i-8$ |
25600.2-i1 |
25600.2-i |
$8$ |
$12$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{26} \cdot 5^{5} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{3} \) |
$1$ |
$1.135453623$ |
2.270907247 |
\( -\frac{59648644}{625} a - \frac{119744792}{625} \) |
\( \bigl[0\) , \( i + 1\) , \( 0\) , \( 88 i + 40\) , \( -8 i - 376\bigr] \) |
${y}^2={x}^{3}+\left(i+1\right){x}^{2}+\left(88i+40\right){x}-8i-376$ |
25600.2-i2 |
25600.2-i |
$8$ |
$12$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{26} \cdot 5^{5} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{3} \) |
$1$ |
$1.135453623$ |
2.270907247 |
\( \frac{59648644}{625} a - \frac{119744792}{625} \) |
\( \bigl[0\) , \( i + 1\) , \( 0\) , \( 88 i - 40\) , \( 376 i + 8\bigr] \) |
${y}^2={x}^{3}+\left(i+1\right){x}^{2}+\left(88i-40\right){x}+376i+8$ |
25600.2-i3 |
25600.2-i |
$8$ |
$12$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{26} \cdot 5^{15} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{3} \cdot 3 \) |
$1$ |
$0.378484541$ |
2.270907247 |
\( -\frac{893935595564}{244140625} a - \frac{1336401187352}{244140625} \) |
\( \bigl[0\) , \( i + 1\) , \( 0\) , \( 8 i + 440\) , \( -3784 i + 8\bigr] \) |
${y}^2={x}^{3}+\left(i+1\right){x}^{2}+\left(8i+440\right){x}-3784i+8$ |
25600.2-i4 |
25600.2-i |
$8$ |
$12$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{26} \cdot 5^{15} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{3} \cdot 3 \) |
$1$ |
$0.378484541$ |
2.270907247 |
\( \frac{893935595564}{244140625} a - \frac{1336401187352}{244140625} \) |
\( \bigl[0\) , \( i + 1\) , \( 0\) , \( 8 i - 440\) , \( -8 i + 3784\bigr] \) |
${y}^2={x}^{3}+\left(i+1\right){x}^{2}+\left(8i-440\right){x}-8i+3784$ |
25600.2-i5 |
25600.2-i |
$8$ |
$12$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{22} \cdot 5^{12} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{4} \cdot 3 \) |
$1$ |
$0.756969082$ |
2.270907247 |
\( -\frac{20720464}{15625} \) |
\( \bigl[0\) , \( i + 1\) , \( 0\) , \( -72 i\) , \( -280 i + 280\bigr] \) |
${y}^2={x}^{3}+\left(i+1\right){x}^{2}-72i{x}-280i+280$ |
25600.2-i6 |
25600.2-i |
$8$ |
$12$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{22} \cdot 5^{4} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{4} \) |
$1$ |
$2.270907247$ |
2.270907247 |
\( \frac{21296}{25} \) |
\( \bigl[0\) , \( i + 1\) , \( 0\) , \( 8 i\) , \( 8 i - 8\bigr] \) |
${y}^2={x}^{3}+\left(i+1\right){x}^{2}+8i{x}+8i-8$ |
25600.2-i7 |
25600.2-i |
$8$ |
$12$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{14} \cdot 5^{2} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2 \) |
$1$ |
$4.541814495$ |
2.270907247 |
\( \frac{16384}{5} \) |
\( \bigl[0\) , \( i + 1\) , \( 0\) , \( -2 i\) , \( 0\bigr] \) |
${y}^2={x}^{3}+\left(i+1\right){x}^{2}-2i{x}$ |
25600.2-i8 |
25600.2-i |
$8$ |
$12$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{14} \cdot 5^{6} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2 \cdot 3 \) |
$1$ |
$1.513938165$ |
2.270907247 |
\( \frac{488095744}{125} \) |
\( \bigl[0\) , \( i + 1\) , \( 0\) , \( -82 i\) , \( -232 i + 232\bigr] \) |
${y}^2={x}^{3}+\left(i+1\right){x}^{2}-82i{x}-232i+232$ |
25600.2-j1 |
25600.2-j |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{28} \cdot 5^{10} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$4$ |
\( 2^{4} \) |
$1$ |
$0.529780130$ |
2.119120521 |
\( -\frac{35999730234}{390625} a - \frac{51700389912}{390625} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -346 i + 240\) , \( 404 i + 3316\bigr] \) |
${y}^2={x}^{3}+\left(-346i+240\right){x}+404i+3316$ |
25600.2-j2 |
25600.2-j |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{28} \cdot 5^{10} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1$ |
$0.529780130$ |
2.119120521 |
\( \frac{35999730234}{390625} a - \frac{51700389912}{390625} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -346 i - 240\) , \( 3316 i + 404\bigr] \) |
${y}^2={x}^{3}+\left(-346i-240\right){x}+3316i+404$ |
25600.2-j3 |
25600.2-j |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{26} \cdot 5^{8} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1$ |
$1.059560260$ |
2.119120521 |
\( \frac{237276}{625} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -26 i\) , \( 68 i + 68\bigr] \) |
${y}^2={x}^{3}-26i{x}+68i+68$ |
25600.2-j4 |
25600.2-j |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{29} \cdot 5^{17} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1$ |
$0.264890065$ |
2.119120521 |
\( -\frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -266 i - 480\) , \( 2868 i - 3852\bigr] \) |
${y}^2={x}^{3}+\left(-266i-480\right){x}+2868i-3852$ |
25600.2-j5 |
25600.2-j |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{29} \cdot 5^{17} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$4$ |
\( 2^{3} \) |
$1$ |
$0.264890065$ |
2.119120521 |
\( \frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -266 i + 480\) , \( -3852 i + 2868\bigr] \) |
${y}^2={x}^{3}+\left(-266i+480\right){x}-3852i+2868$ |
25600.2-j6 |
25600.2-j |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{22} \cdot 5^{4} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$1$ |
$2.119120521$ |
2.119120521 |
\( \frac{148176}{25} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 14 i\) , \( 12 i + 12\bigr] \) |
${y}^2={x}^{3}+14i{x}+12i+12$ |
25600.2-j7 |
25600.2-j |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{14} \cdot 5^{2} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$4.238241043$ |
2.119120521 |
\( \frac{55296}{5} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 4 i\) , \( -2 i - 2\bigr] \) |
${y}^2={x}^{3}+4i{x}-2i-2$ |
25600.2-j8 |
25600.2-j |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
25600.2 |
\( 2^{10} \cdot 5^{2} \) |
\( 2^{26} \cdot 5^{2} \) |
$2.26063$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$4$ |
\( 2 \) |
$1$ |
$1.059560260$ |
2.119120521 |
\( \frac{132304644}{5} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 214 i\) , \( 852 i + 852\bigr] \) |
${y}^2={x}^{3}+214i{x}+852i+852$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.