25600.2-a1
25600.2-a
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 16 ⋅ 5 4 2^{16} \cdot 5^{4} 2 1 6 ⋅ 5 4
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
2 2 2
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 4 2^{4} 2 4
0.312721490 0.312721490 0 . 3 1 2 7 2 1 4 9 0
3.231914471 3.231914471 3 . 2 3 1 9 1 4 4 7 1
4.042756438
− 3456 25 -\frac{3456}{25} − 2 5 3 4 5 6
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , 2 2 2 , − 4 i ] -4 i\bigr] − 4 i ]
y 2 = x 3 + 2 x − 4 i {y}^2={x}^{3}+2{x}-4i y 2 = x 3 + 2 x − 4 i
25600.2-a2
25600.2-a
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 23 ⋅ 5 5 2^{23} \cdot 5^{5} 2 2 3 ⋅ 5 5
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
2 2 2
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
0.312721490 0.312721490 0 . 3 1 2 7 2 1 4 9 0
1.615957235 1.615957235 1 . 6 1 5 9 5 7 2 3 5
4.042756438
− 12579624 625 a + 2240568 625 -\frac{12579624}{625} a + \frac{2240568}{625} − 6 2 5 1 2 5 7 9 6 2 4 a + 6 2 5 2 2 4 0 5 6 8
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , 30 i − 8 30 i - 8 3 0 i − 8 , − 60 i − 28 ] -60 i - 28\bigr] − 6 0 i − 2 8 ]
y 2 = x 3 + ( 30 i − 8 ) x − 60 i − 28 {y}^2={x}^{3}+\left(30i-8\right){x}-60i-28 y 2 = x 3 + ( 3 0 i − 8 ) x − 6 0 i − 2 8
25600.2-a3
25600.2-a
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 23 ⋅ 5 5 2^{23} \cdot 5^{5} 2 2 3 ⋅ 5 5
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
2 2 2
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
0.312721490 0.312721490 0 . 3 1 2 7 2 1 4 9 0
1.615957235 1.615957235 1 . 6 1 5 9 5 7 2 3 5
4.042756438
12579624 625 a + 2240568 625 \frac{12579624}{625} a + \frac{2240568}{625} 6 2 5 1 2 5 7 9 6 2 4 a + 6 2 5 2 2 4 0 5 6 8
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 30 i − 8 -30 i - 8 − 3 0 i − 8 , − 60 i + 28 ] -60 i + 28\bigr] − 6 0 i + 2 8 ]
y 2 = x 3 + ( − 30 i − 8 ) x − 60 i + 28 {y}^2={x}^{3}+\left(-30i-8\right){x}-60i+28 y 2 = x 3 + ( − 3 0 i − 8 ) x − 6 0 i + 2 8
25600.2-a4
25600.2-a
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 14 ⋅ 5 2 2^{14} \cdot 5^{2} 2 1 4 ⋅ 5 2
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
2 2 2
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
1 1 1
1.250885960 1.250885960 1 . 2 5 0 8 8 5 9 6 0
3.231914471 3.231914471 3 . 2 3 1 9 1 4 4 7 1
4.042756438
1898208 5 \frac{1898208}{5} 5 1 8 9 8 2 0 8
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 13 -13 − 1 3 , 18 ] 18\bigr] 1 8 ]
y 2 = x 3 − 13 x + 18 {y}^2={x}^{3}-13{x}+18 y 2 = x 3 − 1 3 x + 1 8
25600.2-b1
25600.2-b
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 23 ⋅ 5 10 2^{23} \cdot 5^{10} 2 2 3 ⋅ 5 1 0
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
1 1 1
0.897871193 0.897871193 0 . 8 9 7 8 7 1 1 9 3
1.795742386
− 324134216 390625 a − 1619282312 390625 -\frac{324134216}{390625} a - \frac{1619282312}{390625} − 3 9 0 6 2 5 3 2 4 1 3 4 2 1 6 a − 3 9 0 6 2 5 1 6 1 9 2 8 2 3 1 2
[ 0 \bigl[0 [ 0 , − i -i − i , 0 0 0 , 70 i + 5 70 i + 5 7 0 i + 5 , 159 i + 238 ] 159 i + 238\bigr] 1 5 9 i + 2 3 8 ]
y 2 = x 3 − i x 2 + ( 70 i + 5 ) x + 159 i + 238 {y}^2={x}^{3}-i{x}^{2}+\left(70i+5\right){x}+159i+238 y 2 = x 3 − i x 2 + ( 7 0 i + 5 ) x + 1 5 9 i + 2 3 8
25600.2-b2
25600.2-b
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 23 ⋅ 5 10 2^{23} \cdot 5^{10} 2 2 3 ⋅ 5 1 0
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
1 1 1
0.897871193 0.897871193 0 . 8 9 7 8 7 1 1 9 3
1.795742386
324134216 390625 a − 1619282312 390625 \frac{324134216}{390625} a - \frac{1619282312}{390625} 3 9 0 6 2 5 3 2 4 1 3 4 2 1 6 a − 3 9 0 6 2 5 1 6 1 9 2 8 2 3 1 2
[ 0 \bigl[0 [ 0 , − i -i − i , 0 0 0 , − 70 i + 5 -70 i + 5 − 7 0 i + 5 , 159 i − 238 ] 159 i - 238\bigr] 1 5 9 i − 2 3 8 ]
y 2 = x 3 − i x 2 + ( − 70 i + 5 ) x + 159 i − 238 {y}^2={x}^{3}-i{x}^{2}+\left(-70i+5\right){x}+159i-238 y 2 = x 3 − i x 2 + ( − 7 0 i + 5 ) x + 1 5 9 i − 2 3 8
25600.2-b3
25600.2-b
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 16 ⋅ 5 8 2^{16} \cdot 5^{8} 2 1 6 ⋅ 5 8
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 4 2^{4} 2 4
1 1 1
1.795742386 1.795742386 1 . 7 9 5 7 4 2 3 8 6
1.795742386
− 1557376 625 -\frac{1557376}{625} − 6 2 5 1 5 5 7 3 7 6
[ 0 \bigl[0 [ 0 , − i -i − i , 0 0 0 , 15 15 1 5 , 25 i ] 25 i\bigr] 2 5 i ]
y 2 = x 3 − i x 2 + 15 x + 25 i {y}^2={x}^{3}-i{x}^{2}+15{x}+25i y 2 = x 3 − i x 2 + 1 5 x + 2 5 i
25600.2-b4
25600.2-b
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 14 ⋅ 5 4 2^{14} \cdot 5^{4} 2 1 4 ⋅ 5 4
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
1 1 1
1.795742386 1.795742386 1 . 7 9 5 7 4 2 3 8 6
1.795742386
252179168 25 \frac{252179168}{25} 2 5 2 5 2 1 7 9 1 6 8
[ 0 \bigl[0 [ 0 , − 1 -1 − 1 , 0 0 0 , − 66 -66 − 6 6 , 230 ] 230\bigr] 2 3 0 ]
y 2 = x 3 − x 2 − 66 x + 230 {y}^2={x}^{3}-{x}^{2}-66{x}+230 y 2 = x 3 − x 2 − 6 6 x + 2 3 0
25600.2-c1
25600.2-c
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 20 ⋅ 5 6 2^{20} \cdot 5^{6} 2 2 0 ⋅ 5 6
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2Cs
1 1 1
2 4 2^{4} 2 4
1 1 1
1.934841452 1.934841452 1 . 9 3 4 8 4 1 4 5 2
1.934841452
119136 625 a + 1036352 625 \frac{119136}{625} a + \frac{1036352}{625} 6 2 5 1 1 9 1 3 6 a + 6 2 5 1 0 3 6 3 5 2
[ 0 \bigl[0 [ 0 , i − 1 i - 1 i − 1 , 0 0 0 , − 4 i + 12 -4 i + 12 − 4 i + 1 2 , 0 ] 0\bigr] 0 ]
y 2 = x 3 + ( i − 1 ) x 2 + ( − 4 i + 12 ) x {y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(-4i+12\right){x} y 2 = x 3 + ( i − 1 ) x 2 + ( − 4 i + 1 2 ) x
25600.2-c2
25600.2-c
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 25 ⋅ 5 9 2^{25} \cdot 5^{9} 2 2 5 ⋅ 5 9
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
1 1 1
0.967420726 0.967420726 0 . 9 6 7 4 2 0 7 2 6
1.934841452
− 79113756 390625 a + 695553908 390625 -\frac{79113756}{390625} a + \frac{695553908}{390625} − 3 9 0 6 2 5 7 9 1 1 3 7 5 6 a + 3 9 0 6 2 5 6 9 5 5 5 3 9 0 8
[ 0 \bigl[0 [ 0 , i − 1 i - 1 i − 1 , 0 0 0 , 16 i − 48 16 i - 48 1 6 i − 4 8 , − 64 i + 32 ] -64 i + 32\bigr] − 6 4 i + 3 2 ]
y 2 = x 3 + ( i − 1 ) x 2 + ( 16 i − 48 ) x − 64 i + 32 {y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(16i-48\right){x}-64i+32 y 2 = x 3 + ( i − 1 ) x 2 + ( 1 6 i − 4 8 ) x − 6 4 i + 3 2
25600.2-c3
25600.2-c
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 10 ⋅ 5 3 2^{10} \cdot 5^{3} 2 1 0 ⋅ 5 3
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 2 2
1 1 1
3.869682904 3.869682904 3 . 8 6 9 6 8 2 9 0 4
1.934841452
− 2751872 25 a + 2323456 25 -\frac{2751872}{25} a + \frac{2323456}{25} − 2 5 2 7 5 1 8 7 2 a + 2 5 2 3 2 3 4 5 6
[ 0 \bigl[0 [ 0 , i − 1 i - 1 i − 1 , 0 0 0 , − 4 i + 7 -4 i + 7 − 4 i + 7 , 10 i + 4 ] 10 i + 4\bigr] 1 0 i + 4 ]
y 2 = x 3 + ( i − 1 ) x 2 + ( − 4 i + 7 ) x + 10 i + 4 {y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(-4i+7\right){x}+10i+4 y 2 = x 3 + ( i − 1 ) x 2 + ( − 4 i + 7 ) x + 1 0 i + 4
25600.2-c4
25600.2-c
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 25 ⋅ 5 6 2^{25} \cdot 5^{6} 2 2 5 ⋅ 5 6
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
1 1 1
0.967420726 0.967420726 0 . 9 6 7 4 2 0 7 2 6
1.934841452
286742876 625 a + 195690268 625 \frac{286742876}{625} a + \frac{195690268}{625} 6 2 5 2 8 6 7 4 2 8 7 6 a + 6 2 5 1 9 5 6 9 0 2 6 8
[ 0 \bigl[0 [ 0 , i − 1 i - 1 i − 1 , 0 0 0 , − 24 i + 152 -24 i + 152 − 2 4 i + 1 5 2 , − 656 i − 208 ] -656 i - 208\bigr] − 6 5 6 i − 2 0 8 ]
y 2 = x 3 + ( i − 1 ) x 2 + ( − 24 i + 152 ) x − 656 i − 208 {y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(-24i+152\right){x}-656i-208 y 2 = x 3 + ( i − 1 ) x 2 + ( − 2 4 i + 1 5 2 ) x − 6 5 6 i − 2 0 8
25600.2-d1
25600.2-d
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 20 ⋅ 5 6 2^{20} \cdot 5^{6} 2 2 0 ⋅ 5 6
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2Cs
1 1 1
2 4 2^{4} 2 4
1 1 1
1.934841452 1.934841452 1 . 9 3 4 8 4 1 4 5 2
1.934841452
− 119136 625 a + 1036352 625 -\frac{119136}{625} a + \frac{1036352}{625} − 6 2 5 1 1 9 1 3 6 a + 6 2 5 1 0 3 6 3 5 2
[ 0 \bigl[0 [ 0 , − i − 1 -i - 1 − i − 1 , 0 0 0 , 4 i + 12 4 i + 12 4 i + 1 2 , 0 ] 0\bigr] 0 ]
y 2 = x 3 + ( − i − 1 ) x 2 + ( 4 i + 12 ) x {y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(4i+12\right){x} y 2 = x 3 + ( − i − 1 ) x 2 + ( 4 i + 1 2 ) x
25600.2-d2
25600.2-d
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 25 ⋅ 5 9 2^{25} \cdot 5^{9} 2 2 5 ⋅ 5 9
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
1 1 1
0.967420726 0.967420726 0 . 9 6 7 4 2 0 7 2 6
1.934841452
79113756 390625 a + 695553908 390625 \frac{79113756}{390625} a + \frac{695553908}{390625} 3 9 0 6 2 5 7 9 1 1 3 7 5 6 a + 3 9 0 6 2 5 6 9 5 5 5 3 9 0 8
[ 0 \bigl[0 [ 0 , − i − 1 -i - 1 − i − 1 , 0 0 0 , − 16 i − 48 -16 i - 48 − 1 6 i − 4 8 , 64 i + 32 ] 64 i + 32\bigr] 6 4 i + 3 2 ]
y 2 = x 3 + ( − i − 1 ) x 2 + ( − 16 i − 48 ) x + 64 i + 32 {y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(-16i-48\right){x}+64i+32 y 2 = x 3 + ( − i − 1 ) x 2 + ( − 1 6 i − 4 8 ) x + 6 4 i + 3 2
25600.2-d3
25600.2-d
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 10 ⋅ 5 3 2^{10} \cdot 5^{3} 2 1 0 ⋅ 5 3
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 2 2
1 1 1
3.869682904 3.869682904 3 . 8 6 9 6 8 2 9 0 4
1.934841452
2751872 25 a + 2323456 25 \frac{2751872}{25} a + \frac{2323456}{25} 2 5 2 7 5 1 8 7 2 a + 2 5 2 3 2 3 4 5 6
[ 0 \bigl[0 [ 0 , − i − 1 -i - 1 − i − 1 , 0 0 0 , 4 i + 7 4 i + 7 4 i + 7 , − 10 i + 4 ] -10 i + 4\bigr] − 1 0 i + 4 ]
y 2 = x 3 + ( − i − 1 ) x 2 + ( 4 i + 7 ) x − 10 i + 4 {y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(4i+7\right){x}-10i+4 y 2 = x 3 + ( − i − 1 ) x 2 + ( 4 i + 7 ) x − 1 0 i + 4
25600.2-d4
25600.2-d
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 25 ⋅ 5 6 2^{25} \cdot 5^{6} 2 2 5 ⋅ 5 6
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
1 1 1
0.967420726 0.967420726 0 . 9 6 7 4 2 0 7 2 6
1.934841452
− 286742876 625 a + 195690268 625 -\frac{286742876}{625} a + \frac{195690268}{625} − 6 2 5 2 8 6 7 4 2 8 7 6 a + 6 2 5 1 9 5 6 9 0 2 6 8
[ 0 \bigl[0 [ 0 , − i − 1 -i - 1 − i − 1 , 0 0 0 , 24 i + 152 24 i + 152 2 4 i + 1 5 2 , 656 i − 208 ] 656 i - 208\bigr] 6 5 6 i − 2 0 8 ]
y 2 = x 3 + ( − i − 1 ) x 2 + ( 24 i + 152 ) x + 656 i − 208 {y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(24i+152\right){x}+656i-208 y 2 = x 3 + ( − i − 1 ) x 2 + ( 2 4 i + 1 5 2 ) x + 6 5 6 i − 2 0 8
25600.2-e1
25600.2-e
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 14 ⋅ 5 5 2^{14} \cdot 5^{5} 2 1 4 ⋅ 5 5
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 2 2
1.084866568 1.084866568 1 . 0 8 4 8 6 6 5 6 8
3.127360497 3.127360497 3 . 1 2 7 3 6 0 4 9 7
3.392768851
421696 625 a + 663328 625 \frac{421696}{625} a + \frac{663328}{625} 6 2 5 4 2 1 6 9 6 a + 6 2 5 6 6 3 3 2 8
[ 0 \bigl[0 [ 0 , − 1 -1 − 1 , 0 0 0 , 4 i + 2 4 i + 2 4 i + 2 , − 4 i − 2 ] -4 i - 2\bigr] − 4 i − 2 ]
y 2 = x 3 − x 2 + ( 4 i + 2 ) x − 4 i − 2 {y}^2={x}^{3}-{x}^{2}+\left(4i+2\right){x}-4i-2 y 2 = x 3 − x 2 + ( 4 i + 2 ) x − 4 i − 2
25600.2-e2
25600.2-e
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 16 ⋅ 5 4 2^{16} \cdot 5^{4} 2 1 6 ⋅ 5 4
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
1 1 1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2Cs
1 1 1
2 4 2^{4} 2 4
0.542433284 0.542433284 0 . 5 4 2 4 3 3 2 8 4
3.127360497 3.127360497 3 . 1 2 7 3 6 0 4 9 7
3.392768851
− 29952 25 a + 10624 5 -\frac{29952}{25} a + \frac{10624}{5} − 2 5 2 9 9 5 2 a + 5 1 0 6 2 4
[ 0 \bigl[0 [ 0 , i i i , 0 0 0 , 4 i + 3 4 i + 3 4 i + 3 , 3 i − 4 ] 3 i - 4\bigr] 3 i − 4 ]
y 2 = x 3 + i x 2 + ( 4 i + 3 ) x + 3 i − 4 {y}^2={x}^{3}+i{x}^{2}+\left(4i+3\right){x}+3i-4 y 2 = x 3 + i x 2 + ( 4 i + 3 ) x + 3 i − 4
25600.2-e3
25600.2-e
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 23 ⋅ 5 5 2^{23} \cdot 5^{5} 2 2 3 ⋅ 5 5
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 4 2^{4} 2 4
0.271216642 0.271216642 0 . 2 7 1 2 1 6 6 4 2
1.563680248 1.563680248 1 . 5 6 3 6 8 0 2 4 8
3.392768851
18091224 625 a + 10253768 625 \frac{18091224}{625} a + \frac{10253768}{625} 6 2 5 1 8 0 9 1 2 2 4 a + 6 2 5 1 0 2 5 3 7 6 8
[ 0 \bigl[0 [ 0 , i i i , 0 0 0 , 34 i + 13 34 i + 13 3 4 i + 1 3 , 25 i + 70 ] 25 i + 70\bigr] 2 5 i + 7 0 ]
y 2 = x 3 + i x 2 + ( 34 i + 13 ) x + 25 i + 70 {y}^2={x}^{3}+i{x}^{2}+\left(34i+13\right){x}+25i+70 y 2 = x 3 + i x 2 + ( 3 4 i + 1 3 ) x + 2 5 i + 7 0
25600.2-e4
25600.2-e
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 23 ⋅ 5 2 2^{23} \cdot 5^{2} 2 2 3 ⋅ 5 2
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
1.084866568 1.084866568 1 . 0 8 4 8 6 6 5 6 8
1.563680248 1.563680248 1 . 5 6 3 6 8 0 2 4 8
3.392768851
− 16691192 5 a + 311048 5 -\frac{16691192}{5} a + \frac{311048}{5} − 5 1 6 6 9 1 1 9 2 a + 5 3 1 1 0 4 8
[ 0 \bigl[0 [ 0 , i i i , 0 0 0 , 54 i + 53 54 i + 53 5 4 i + 5 3 , 113 i − 254 ] 113 i - 254\bigr] 1 1 3 i − 2 5 4 ]
y 2 = x 3 + i x 2 + ( 54 i + 53 ) x + 113 i − 254 {y}^2={x}^{3}+i{x}^{2}+\left(54i+53\right){x}+113i-254 y 2 = x 3 + i x 2 + ( 5 4 i + 5 3 ) x + 1 1 3 i − 2 5 4
25600.2-f1
25600.2-f
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 24 ⋅ 5 3 2^{24} \cdot 5^{3} 2 2 4 ⋅ 5 3
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
1.689027116 1.689027116 1 . 6 8 9 0 2 7 1 1 6
1.016598393 1.016598393 1 . 0 1 6 5 9 8 3 9 3
3.434124507
− 649216016 25 a − 494572808 25 -\frac{649216016}{25} a - \frac{494572808}{25} − 2 5 6 4 9 2 1 6 0 1 6 a − 2 5 4 9 4 5 7 2 8 0 8
[ 0 \bigl[0 [ 0 , 1 1 1 , 0 0 0 , − 106 i − 213 -106 i - 213 − 1 0 6 i − 2 1 3 , − 938 i − 1161 ] -938 i - 1161\bigr] − 9 3 8 i − 1 1 6 1 ]
y 2 = x 3 + x 2 + ( − 106 i − 213 ) x − 938 i − 1161 {y}^2={x}^{3}+{x}^{2}+\left(-106i-213\right){x}-938i-1161 y 2 = x 3 + x 2 + ( − 1 0 6 i − 2 1 3 ) x − 9 3 8 i − 1 1 6 1
25600.2-f2
25600.2-f
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 24 ⋅ 5 3 2^{24} \cdot 5^{3} 2 2 4 ⋅ 5 3
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
0.844513558 0.844513558 0 . 8 4 4 5 1 3 5 5 8
1.016598393 1.016598393 1 . 0 1 6 5 9 8 3 9 3
3.434124507
649216016 25 a − 494572808 25 \frac{649216016}{25} a - \frac{494572808}{25} 2 5 6 4 9 2 1 6 0 1 6 a − 2 5 4 9 4 5 7 2 8 0 8
[ 0 \bigl[0 [ 0 , − i -i − i , 0 0 0 , − 106 i + 213 -106 i + 213 − 1 0 6 i + 2 1 3 , − 1161 i − 938 ] -1161 i - 938\bigr] − 1 1 6 1 i − 9 3 8 ]
y 2 = x 3 − i x 2 + ( − 106 i + 213 ) x − 1161 i − 938 {y}^2={x}^{3}-i{x}^{2}+\left(-106i+213\right){x}-1161i-938 y 2 = x 3 − i x 2 + ( − 1 0 6 i + 2 1 3 ) x − 1 1 6 1 i − 9 3 8
25600.2-f3
25600.2-f
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 18 ⋅ 5 6 2^{18} \cdot 5^{6} 2 1 8 ⋅ 5 6
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
1 1 1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 5 2^{5} 2 5
0.422256779 0.422256779 0 . 4 2 2 2 5 6 7 7 9
2.033196787 2.033196787 2 . 0 3 3 1 9 6 7 8 7
3.434124507
− 3181056 625 a − 1129792 625 -\frac{3181056}{625} a - \frac{1129792}{625} − 6 2 5 3 1 8 1 0 5 6 a − 6 2 5 1 1 2 9 7 9 2
[ 0 \bigl[0 [ 0 , − i -i − i , 0 0 0 , − 6 i + 13 -6 i + 13 − 6 i + 1 3 , − 21 i − 18 ] -21 i - 18\bigr] − 2 1 i − 1 8 ]
y 2 = x 3 − i x 2 + ( − 6 i + 13 ) x − 21 i − 18 {y}^2={x}^{3}-i{x}^{2}+\left(-6i+13\right){x}-21i-18 y 2 = x 3 − i x 2 + ( − 6 i + 1 3 ) x − 2 1 i − 1 8
25600.2-f4
25600.2-f
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 18 ⋅ 5 6 2^{18} \cdot 5^{6} 2 1 8 ⋅ 5 6
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
1 1 1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 4 2^{4} 2 4
0.844513558 0.844513558 0 . 8 4 4 5 1 3 5 5 8
2.033196787 2.033196787 2 . 0 3 3 1 9 6 7 8 7
3.434124507
3181056 625 a − 1129792 625 \frac{3181056}{625} a - \frac{1129792}{625} 6 2 5 3 1 8 1 0 5 6 a − 6 2 5 1 1 2 9 7 9 2
[ 0 \bigl[0 [ 0 , 1 1 1 , 0 0 0 , − 6 i − 13 -6 i - 13 − 6 i − 1 3 , − 18 i − 21 ] -18 i - 21\bigr] − 1 8 i − 2 1 ]
y 2 = x 3 + x 2 + ( − 6 i − 13 ) x − 18 i − 21 {y}^2={x}^{3}+{x}^{2}+\left(-6i-13\right){x}-18i-21 y 2 = x 3 + x 2 + ( − 6 i − 1 3 ) x − 1 8 i − 2 1
25600.2-f5
25600.2-f
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 24 ⋅ 5 9 2^{24} \cdot 5^{9} 2 2 4 ⋅ 5 9
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
1.689027116 1.689027116 1 . 6 8 9 0 2 7 1 1 6
1.016598393 1.016598393 1 . 0 1 6 5 9 8 3 9 3
3.434124507
− 256910704 390625 a − 293256872 390625 -\frac{256910704}{390625} a - \frac{293256872}{390625} − 3 9 0 6 2 5 2 5 6 9 1 0 7 0 4 a − 3 9 0 6 2 5 2 9 3 2 5 6 8 7 2
[ 0 \bigl[0 [ 0 , 1 1 1 , 0 0 0 , − 26 i + 27 -26 i + 27 − 2 6 i + 2 7 , − 34 i − 129 ] -34 i - 129\bigr] − 3 4 i − 1 2 9 ]
y 2 = x 3 + x 2 + ( − 26 i + 27 ) x − 34 i − 129 {y}^2={x}^{3}+{x}^{2}+\left(-26i+27\right){x}-34i-129 y 2 = x 3 + x 2 + ( − 2 6 i + 2 7 ) x − 3 4 i − 1 2 9
25600.2-f6
25600.2-f
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 24 ⋅ 5 9 2^{24} \cdot 5^{9} 2 2 4 ⋅ 5 9
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 5 2^{5} 2 5
0.211128389 0.211128389 0 . 2 1 1 1 2 8 3 8 9
1.016598393 1.016598393 1 . 0 1 6 5 9 8 3 9 3
3.434124507
256910704 390625 a − 293256872 390625 \frac{256910704}{390625} a - \frac{293256872}{390625} 3 9 0 6 2 5 2 5 6 9 1 0 7 0 4 a − 3 9 0 6 2 5 2 9 3 2 5 6 8 7 2
[ 0 \bigl[0 [ 0 , i i i , 0 0 0 , − 26 i − 27 -26 i - 27 − 2 6 i − 2 7 , 129 i + 34 ] 129 i + 34\bigr] 1 2 9 i + 3 4 ]
y 2 = x 3 + i x 2 + ( − 26 i − 27 ) x + 129 i + 34 {y}^2={x}^{3}+i{x}^{2}+\left(-26i-27\right){x}+129i+34 y 2 = x 3 + i x 2 + ( − 2 6 i − 2 7 ) x + 1 2 9 i + 3 4
25600.2-g1
25600.2-g
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 14 ⋅ 5 5 2^{14} \cdot 5^{5} 2 1 4 ⋅ 5 5
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
0.287252687 0.287252687 0 . 2 8 7 2 5 2 6 8 7
3.127360497 3.127360497 3 . 1 2 7 3 6 0 4 9 7
3.593370833
− 421696 625 a + 663328 625 -\frac{421696}{625} a + \frac{663328}{625} − 6 2 5 4 2 1 6 9 6 a + 6 2 5 6 6 3 3 2 8
[ 0 \bigl[0 [ 0 , i i i , 0 0 0 , 4 i − 2 4 i - 2 4 i − 2 , − 2 i − 4 ] -2 i - 4\bigr] − 2 i − 4 ]
y 2 = x 3 + i x 2 + ( 4 i − 2 ) x − 2 i − 4 {y}^2={x}^{3}+i{x}^{2}+\left(4i-2\right){x}-2i-4 y 2 = x 3 + i x 2 + ( 4 i − 2 ) x − 2 i − 4
25600.2-g2
25600.2-g
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 16 ⋅ 5 4 2^{16} \cdot 5^{4} 2 1 6 ⋅ 5 4
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
1 1 1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2Cs
1 1 1
2 4 2^{4} 2 4
0.574505375 0.574505375 0 . 5 7 4 5 0 5 3 7 5
3.127360497 3.127360497 3 . 1 2 7 3 6 0 4 9 7
3.593370833
29952 25 a + 10624 5 \frac{29952}{25} a + \frac{10624}{5} 2 5 2 9 9 5 2 a + 5 1 0 6 2 4
[ 0 \bigl[0 [ 0 , 1 1 1 , 0 0 0 , 4 i − 3 4 i - 3 4 i − 3 , 4 i − 3 ] 4 i - 3\bigr] 4 i − 3 ]
y 2 = x 3 + x 2 + ( 4 i − 3 ) x + 4 i − 3 {y}^2={x}^{3}+{x}^{2}+\left(4i-3\right){x}+4i-3 y 2 = x 3 + x 2 + ( 4 i − 3 ) x + 4 i − 3
25600.2-g3
25600.2-g
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 23 ⋅ 5 5 2^{23} \cdot 5^{5} 2 2 3 ⋅ 5 5
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
1.149010751 1.149010751 1 . 1 4 9 0 1 0 7 5 1
1.563680248 1.563680248 1 . 5 6 3 6 8 0 2 4 8
3.593370833
− 18091224 625 a + 10253768 625 -\frac{18091224}{625} a + \frac{10253768}{625} − 6 2 5 1 8 0 9 1 2 2 4 a + 6 2 5 1 0 2 5 3 7 6 8
[ 0 \bigl[0 [ 0 , 1 1 1 , 0 0 0 , 34 i − 13 34 i - 13 3 4 i − 1 3 , − 70 i − 25 ] -70 i - 25\bigr] − 7 0 i − 2 5 ]
y 2 = x 3 + x 2 + ( 34 i − 13 ) x − 70 i − 25 {y}^2={x}^{3}+{x}^{2}+\left(34i-13\right){x}-70i-25 y 2 = x 3 + x 2 + ( 3 4 i − 1 3 ) x − 7 0 i − 2 5
25600.2-g4
25600.2-g
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 23 ⋅ 5 2 2^{23} \cdot 5^{2} 2 2 3 ⋅ 5 2
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
1.149010751 1.149010751 1 . 1 4 9 0 1 0 7 5 1
1.563680248 1.563680248 1 . 5 6 3 6 8 0 2 4 8
3.593370833
16691192 5 a + 311048 5 \frac{16691192}{5} a + \frac{311048}{5} 5 1 6 6 9 1 1 9 2 a + 5 3 1 1 0 4 8
[ 0 \bigl[0 [ 0 , 1 1 1 , 0 0 0 , 54 i − 53 54 i - 53 5 4 i − 5 3 , 254 i − 113 ] 254 i - 113\bigr] 2 5 4 i − 1 1 3 ]
y 2 = x 3 + x 2 + ( 54 i − 53 ) x + 254 i − 113 {y}^2={x}^{3}+{x}^{2}+\left(54i-53\right){x}+254i-113 y 2 = x 3 + x 2 + ( 5 4 i − 5 3 ) x + 2 5 4 i − 1 1 3
25600.2-h1
25600.2-h
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 18 ⋅ 5 4 2^{18} \cdot 5^{4} 2 1 8 ⋅ 5 4
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
1 1 1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 4 2^{4} 2 4
0.643884228 0.643884228 0 . 6 4 3 8 8 4 2 2 8
2.902337071 2.902337071 2 . 9 0 2 3 3 7 0 7 1
3.737538130
− 64 25 -\frac{64}{25} − 2 5 6 4
[ 0 \bigl[0 [ 0 , i − 1 i - 1 i − 1 , 0 0 0 , 0 0 0 , − 4 i − 4 ] -4 i - 4\bigr] − 4 i − 4 ]
y 2 = x 3 + ( i − 1 ) x 2 − 4 i − 4 {y}^2={x}^{3}+\left(i-1\right){x}^{2}-4i-4 y 2 = x 3 + ( i − 1 ) x 2 − 4 i − 4
25600.2-h2
25600.2-h
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 24 ⋅ 5 5 2^{24} \cdot 5^{5} 2 2 4 ⋅ 5 5
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 4 2^{4} 2 4
0.321942114 0.321942114 0 . 3 2 1 9 4 2 1 1 4
1.451168535 1.451168535 1 . 4 5 1 1 6 8 5 3 5
3.737538130
− 10307536 625 a + 24381448 625 -\frac{10307536}{625} a + \frac{24381448}{625} − 6 2 5 1 0 3 0 7 5 3 6 a + 6 2 5 2 4 3 8 1 4 4 8
[ 0 \bigl[0 [ 0 , i − 1 i - 1 i − 1 , 0 0 0 , − 20 i − 40 -20 i - 40 − 2 0 i − 4 0 , − 76 i − 68 ] -76 i - 68\bigr] − 7 6 i − 6 8 ]
y 2 = x 3 + ( i − 1 ) x 2 + ( − 20 i − 40 ) x − 76 i − 68 {y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(-20i-40\right){x}-76i-68 y 2 = x 3 + ( i − 1 ) x 2 + ( − 2 0 i − 4 0 ) x − 7 6 i − 6 8
25600.2-h3
25600.2-h
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 24 ⋅ 5 5 2^{24} \cdot 5^{5} 2 2 4 ⋅ 5 5
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
1.287768456 1.287768456 1 . 2 8 7 7 6 8 4 5 6
1.451168535 1.451168535 1 . 4 5 1 1 6 8 5 3 5
3.737538130
10307536 625 a + 24381448 625 \frac{10307536}{625} a + \frac{24381448}{625} 6 2 5 1 0 3 0 7 5 3 6 a + 6 2 5 2 4 3 8 1 4 4 8
[ 0 \bigl[0 [ 0 , i − 1 i - 1 i − 1 , 0 0 0 , − 20 i + 40 -20 i + 40 − 2 0 i + 4 0 , − 68 i − 76 ] -68 i - 76\bigr] − 6 8 i − 7 6 ]
y 2 = x 3 + ( i − 1 ) x 2 + ( − 20 i + 40 ) x − 68 i − 76 {y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(-20i+40\right){x}-68i-76 y 2 = x 3 + ( i − 1 ) x 2 + ( − 2 0 i + 4 0 ) x − 6 8 i − 7 6
25600.2-h4
25600.2-h
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 18 ⋅ 5 2 2^{18} \cdot 5^{2} 2 1 8 ⋅ 5 2
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2
1.287768456 1.287768456 1 . 2 8 7 7 6 8 4 5 6
2.902337071 2.902337071 2 . 9 0 2 3 3 7 0 7 1
3.737538130
438976 5 \frac{438976}{5} 5 4 3 8 9 7 6
[ 0 \bigl[0 [ 0 , i + 1 i + 1 i + 1 , 0 0 0 , − 12 i -12 i − 1 2 i , 8 i − 8 ] 8 i - 8\bigr] 8 i − 8 ]
y 2 = x 3 + ( i + 1 ) x 2 − 12 i x + 8 i − 8 {y}^2={x}^{3}+\left(i+1\right){x}^{2}-12i{x}+8i-8 y 2 = x 3 + ( i + 1 ) x 2 − 1 2 i x + 8 i − 8
25600.2-i1
25600.2-i
8 8 8
12 12 1 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 26 ⋅ 5 5 2^{26} \cdot 5^{5} 2 2 6 ⋅ 5 5
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
2 3 2^{3} 2 3
1 1 1
1.135453623 1.135453623 1 . 1 3 5 4 5 3 6 2 3
2.270907247
− 59648644 625 a − 119744792 625 -\frac{59648644}{625} a - \frac{119744792}{625} − 6 2 5 5 9 6 4 8 6 4 4 a − 6 2 5 1 1 9 7 4 4 7 9 2
[ 0 \bigl[0 [ 0 , i + 1 i + 1 i + 1 , 0 0 0 , 88 i + 40 88 i + 40 8 8 i + 4 0 , − 8 i − 376 ] -8 i - 376\bigr] − 8 i − 3 7 6 ]
y 2 = x 3 + ( i + 1 ) x 2 + ( 88 i + 40 ) x − 8 i − 376 {y}^2={x}^{3}+\left(i+1\right){x}^{2}+\left(88i+40\right){x}-8i-376 y 2 = x 3 + ( i + 1 ) x 2 + ( 8 8 i + 4 0 ) x − 8 i − 3 7 6
25600.2-i2
25600.2-i
8 8 8
12 12 1 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 26 ⋅ 5 5 2^{26} \cdot 5^{5} 2 2 6 ⋅ 5 5
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
2 3 2^{3} 2 3
1 1 1
1.135453623 1.135453623 1 . 1 3 5 4 5 3 6 2 3
2.270907247
59648644 625 a − 119744792 625 \frac{59648644}{625} a - \frac{119744792}{625} 6 2 5 5 9 6 4 8 6 4 4 a − 6 2 5 1 1 9 7 4 4 7 9 2
[ 0 \bigl[0 [ 0 , i + 1 i + 1 i + 1 , 0 0 0 , 88 i − 40 88 i - 40 8 8 i − 4 0 , 376 i + 8 ] 376 i + 8\bigr] 3 7 6 i + 8 ]
y 2 = x 3 + ( i + 1 ) x 2 + ( 88 i − 40 ) x + 376 i + 8 {y}^2={x}^{3}+\left(i+1\right){x}^{2}+\left(88i-40\right){x}+376i+8 y 2 = x 3 + ( i + 1 ) x 2 + ( 8 8 i − 4 0 ) x + 3 7 6 i + 8
25600.2-i3
25600.2-i
8 8 8
12 12 1 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 26 ⋅ 5 15 2^{26} \cdot 5^{15} 2 2 6 ⋅ 5 1 5
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
2 3 ⋅ 3 2^{3} \cdot 3 2 3 ⋅ 3
1 1 1
0.378484541 0.378484541 0 . 3 7 8 4 8 4 5 4 1
2.270907247
− 893935595564 244140625 a − 1336401187352 244140625 -\frac{893935595564}{244140625} a - \frac{1336401187352}{244140625} − 2 4 4 1 4 0 6 2 5 8 9 3 9 3 5 5 9 5 5 6 4 a − 2 4 4 1 4 0 6 2 5 1 3 3 6 4 0 1 1 8 7 3 5 2
[ 0 \bigl[0 [ 0 , i + 1 i + 1 i + 1 , 0 0 0 , 8 i + 440 8 i + 440 8 i + 4 4 0 , − 3784 i + 8 ] -3784 i + 8\bigr] − 3 7 8 4 i + 8 ]
y 2 = x 3 + ( i + 1 ) x 2 + ( 8 i + 440 ) x − 3784 i + 8 {y}^2={x}^{3}+\left(i+1\right){x}^{2}+\left(8i+440\right){x}-3784i+8 y 2 = x 3 + ( i + 1 ) x 2 + ( 8 i + 4 4 0 ) x − 3 7 8 4 i + 8
25600.2-i4
25600.2-i
8 8 8
12 12 1 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 26 ⋅ 5 15 2^{26} \cdot 5^{15} 2 2 6 ⋅ 5 1 5
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
2 3 ⋅ 3 2^{3} \cdot 3 2 3 ⋅ 3
1 1 1
0.378484541 0.378484541 0 . 3 7 8 4 8 4 5 4 1
2.270907247
893935595564 244140625 a − 1336401187352 244140625 \frac{893935595564}{244140625} a - \frac{1336401187352}{244140625} 2 4 4 1 4 0 6 2 5 8 9 3 9 3 5 5 9 5 5 6 4 a − 2 4 4 1 4 0 6 2 5 1 3 3 6 4 0 1 1 8 7 3 5 2
[ 0 \bigl[0 [ 0 , i + 1 i + 1 i + 1 , 0 0 0 , 8 i − 440 8 i - 440 8 i − 4 4 0 , − 8 i + 3784 ] -8 i + 3784\bigr] − 8 i + 3 7 8 4 ]
y 2 = x 3 + ( i + 1 ) x 2 + ( 8 i − 440 ) x − 8 i + 3784 {y}^2={x}^{3}+\left(i+1\right){x}^{2}+\left(8i-440\right){x}-8i+3784 y 2 = x 3 + ( i + 1 ) x 2 + ( 8 i − 4 4 0 ) x − 8 i + 3 7 8 4
25600.2-i5
25600.2-i
8 8 8
12 12 1 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 22 ⋅ 5 12 2^{22} \cdot 5^{12} 2 2 2 ⋅ 5 1 2
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2Cs , 3B
1 1 1
2 4 ⋅ 3 2^{4} \cdot 3 2 4 ⋅ 3
1 1 1
0.756969082 0.756969082 0 . 7 5 6 9 6 9 0 8 2
2.270907247
− 20720464 15625 -\frac{20720464}{15625} − 1 5 6 2 5 2 0 7 2 0 4 6 4
[ 0 \bigl[0 [ 0 , i + 1 i + 1 i + 1 , 0 0 0 , − 72 i -72 i − 7 2 i , − 280 i + 280 ] -280 i + 280\bigr] − 2 8 0 i + 2 8 0 ]
y 2 = x 3 + ( i + 1 ) x 2 − 72 i x − 280 i + 280 {y}^2={x}^{3}+\left(i+1\right){x}^{2}-72i{x}-280i+280 y 2 = x 3 + ( i + 1 ) x 2 − 7 2 i x − 2 8 0 i + 2 8 0
25600.2-i6
25600.2-i
8 8 8
12 12 1 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 22 ⋅ 5 4 2^{22} \cdot 5^{4} 2 2 2 ⋅ 5 4
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2Cs , 3B
1 1 1
2 4 2^{4} 2 4
1 1 1
2.270907247 2.270907247 2 . 2 7 0 9 0 7 2 4 7
2.270907247
21296 25 \frac{21296}{25} 2 5 2 1 2 9 6
[ 0 \bigl[0 [ 0 , i + 1 i + 1 i + 1 , 0 0 0 , 8 i 8 i 8 i , 8 i − 8 ] 8 i - 8\bigr] 8 i − 8 ]
y 2 = x 3 + ( i + 1 ) x 2 + 8 i x + 8 i − 8 {y}^2={x}^{3}+\left(i+1\right){x}^{2}+8i{x}+8i-8 y 2 = x 3 + ( i + 1 ) x 2 + 8 i x + 8 i − 8
25600.2-i7
25600.2-i
8 8 8
12 12 1 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 14 ⋅ 5 2 2^{14} \cdot 5^{2} 2 1 4 ⋅ 5 2
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
2 2 2
1 1 1
4.541814495 4.541814495 4 . 5 4 1 8 1 4 4 9 5
2.270907247
16384 5 \frac{16384}{5} 5 1 6 3 8 4
[ 0 \bigl[0 [ 0 , i + 1 i + 1 i + 1 , 0 0 0 , − 2 i -2 i − 2 i , 0 ] 0\bigr] 0 ]
y 2 = x 3 + ( i + 1 ) x 2 − 2 i x {y}^2={x}^{3}+\left(i+1\right){x}^{2}-2i{x} y 2 = x 3 + ( i + 1 ) x 2 − 2 i x
25600.2-i8
25600.2-i
8 8 8
12 12 1 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 14 ⋅ 5 6 2^{14} \cdot 5^{6} 2 1 4 ⋅ 5 6
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
1.513938165 1.513938165 1 . 5 1 3 9 3 8 1 6 5
2.270907247
488095744 125 \frac{488095744}{125} 1 2 5 4 8 8 0 9 5 7 4 4
[ 0 \bigl[0 [ 0 , i + 1 i + 1 i + 1 , 0 0 0 , − 82 i -82 i − 8 2 i , − 232 i + 232 ] -232 i + 232\bigr] − 2 3 2 i + 2 3 2 ]
y 2 = x 3 + ( i + 1 ) x 2 − 82 i x − 232 i + 232 {y}^2={x}^{3}+\left(i+1\right){x}^{2}-82i{x}-232i+232 y 2 = x 3 + ( i + 1 ) x 2 − 8 2 i x − 2 3 2 i + 2 3 2
25600.2-j1
25600.2-j
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 28 ⋅ 5 10 2^{28} \cdot 5^{10} 2 2 8 ⋅ 5 1 0
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
4 4 4
2 4 2^{4} 2 4
1 1 1
0.529780130 0.529780130 0 . 5 2 9 7 8 0 1 3 0
2.119120521
− 35999730234 390625 a − 51700389912 390625 -\frac{35999730234}{390625} a - \frac{51700389912}{390625} − 3 9 0 6 2 5 3 5 9 9 9 7 3 0 2 3 4 a − 3 9 0 6 2 5 5 1 7 0 0 3 8 9 9 1 2
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 346 i + 240 -346 i + 240 − 3 4 6 i + 2 4 0 , 404 i + 3316 ] 404 i + 3316\bigr] 4 0 4 i + 3 3 1 6 ]
y 2 = x 3 + ( − 346 i + 240 ) x + 404 i + 3316 {y}^2={x}^{3}+\left(-346i+240\right){x}+404i+3316 y 2 = x 3 + ( − 3 4 6 i + 2 4 0 ) x + 4 0 4 i + 3 3 1 6
25600.2-j2
25600.2-j
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 28 ⋅ 5 10 2^{28} \cdot 5^{10} 2 2 8 ⋅ 5 1 0
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 6 2^{6} 2 6
1 1 1
0.529780130 0.529780130 0 . 5 2 9 7 8 0 1 3 0
2.119120521
35999730234 390625 a − 51700389912 390625 \frac{35999730234}{390625} a - \frac{51700389912}{390625} 3 9 0 6 2 5 3 5 9 9 9 7 3 0 2 3 4 a − 3 9 0 6 2 5 5 1 7 0 0 3 8 9 9 1 2
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 346 i − 240 -346 i - 240 − 3 4 6 i − 2 4 0 , 3316 i + 404 ] 3316 i + 404\bigr] 3 3 1 6 i + 4 0 4 ]
y 2 = x 3 + ( − 346 i − 240 ) x + 3316 i + 404 {y}^2={x}^{3}+\left(-346i-240\right){x}+3316i+404 y 2 = x 3 + ( − 3 4 6 i − 2 4 0 ) x + 3 3 1 6 i + 4 0 4
25600.2-j3
25600.2-j
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 26 ⋅ 5 8 2^{26} \cdot 5^{8} 2 2 6 ⋅ 5 8
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 5 2^{5} 2 5
1 1 1
1.059560260 1.059560260 1 . 0 5 9 5 6 0 2 6 0
2.119120521
237276 625 \frac{237276}{625} 6 2 5 2 3 7 2 7 6
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 26 i -26 i − 2 6 i , 68 i + 68 ] 68 i + 68\bigr] 6 8 i + 6 8 ]
y 2 = x 3 − 26 i x + 68 i + 68 {y}^2={x}^{3}-26i{x}+68i+68 y 2 = x 3 − 2 6 i x + 6 8 i + 6 8
25600.2-j4
25600.2-j
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 29 ⋅ 5 17 2^{29} \cdot 5^{17} 2 2 9 ⋅ 5 1 7
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 5 2^{5} 2 5
1 1 1
0.264890065 0.264890065 0 . 2 6 4 8 9 0 0 6 5
2.119120521
− 22845545233191 152587890625 a + 135893651813613 152587890625 -\frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} − 1 5 2 5 8 7 8 9 0 6 2 5 2 2 8 4 5 5 4 5 2 3 3 1 9 1 a + 1 5 2 5 8 7 8 9 0 6 2 5 1 3 5 8 9 3 6 5 1 8 1 3 6 1 3
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 266 i − 480 -266 i - 480 − 2 6 6 i − 4 8 0 , 2868 i − 3852 ] 2868 i - 3852\bigr] 2 8 6 8 i − 3 8 5 2 ]
y 2 = x 3 + ( − 266 i − 480 ) x + 2868 i − 3852 {y}^2={x}^{3}+\left(-266i-480\right){x}+2868i-3852 y 2 = x 3 + ( − 2 6 6 i − 4 8 0 ) x + 2 8 6 8 i − 3 8 5 2
25600.2-j5
25600.2-j
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 29 ⋅ 5 17 2^{29} \cdot 5^{17} 2 2 9 ⋅ 5 1 7
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
4 4 4
2 3 2^{3} 2 3
1 1 1
0.264890065 0.264890065 0 . 2 6 4 8 9 0 0 6 5
2.119120521
22845545233191 152587890625 a + 135893651813613 152587890625 \frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} 1 5 2 5 8 7 8 9 0 6 2 5 2 2 8 4 5 5 4 5 2 3 3 1 9 1 a + 1 5 2 5 8 7 8 9 0 6 2 5 1 3 5 8 9 3 6 5 1 8 1 3 6 1 3
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 266 i + 480 -266 i + 480 − 2 6 6 i + 4 8 0 , − 3852 i + 2868 ] -3852 i + 2868\bigr] − 3 8 5 2 i + 2 8 6 8 ]
y 2 = x 3 + ( − 266 i + 480 ) x − 3852 i + 2868 {y}^2={x}^{3}+\left(-266i+480\right){x}-3852i+2868 y 2 = x 3 + ( − 2 6 6 i + 4 8 0 ) x − 3 8 5 2 i + 2 8 6 8
25600.2-j6
25600.2-j
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 22 ⋅ 5 4 2^{22} \cdot 5^{4} 2 2 2 ⋅ 5 4
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 4 2^{4} 2 4
1 1 1
2.119120521 2.119120521 2 . 1 1 9 1 2 0 5 2 1
2.119120521
148176 25 \frac{148176}{25} 2 5 1 4 8 1 7 6
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , 14 i 14 i 1 4 i , 12 i + 12 ] 12 i + 12\bigr] 1 2 i + 1 2 ]
y 2 = x 3 + 14 i x + 12 i + 12 {y}^2={x}^{3}+14i{x}+12i+12 y 2 = x 3 + 1 4 i x + 1 2 i + 1 2
25600.2-j7
25600.2-j
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 14 ⋅ 5 2 2^{14} \cdot 5^{2} 2 1 4 ⋅ 5 2
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2
1 1 1
4.238241043 4.238241043 4 . 2 3 8 2 4 1 0 4 3
2.119120521
55296 5 \frac{55296}{5} 5 5 5 2 9 6
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , 4 i 4 i 4 i , − 2 i − 2 ] -2 i - 2\bigr] − 2 i − 2 ]
y 2 = x 3 + 4 i x − 2 i − 2 {y}^2={x}^{3}+4i{x}-2i-2 y 2 = x 3 + 4 i x − 2 i − 2
25600.2-j8
25600.2-j
10 10 1 0
16 16 1 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
25600.2
2 10 ⋅ 5 2 2^{10} \cdot 5^{2} 2 1 0 ⋅ 5 2
2 26 ⋅ 5 2 2^{26} \cdot 5^{2} 2 2 6 ⋅ 5 2
2.26063 2.26063 2 . 2 6 0 6 3
( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 ) (a+1), (-a-2), (2a+1) ( a + 1 ) , ( − a − 2 ) , ( 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
4 4 4
2 2 2
1 1 1
1.059560260 1.059560260 1 . 0 5 9 5 6 0 2 6 0
2.119120521
132304644 5 \frac{132304644}{5} 5 1 3 2 3 0 4 6 4 4
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , 214 i 214 i 2 1 4 i , 852 i + 852 ] 852 i + 852\bigr] 8 5 2 i + 8 5 2 ]
y 2 = x 3 + 214 i x + 852 i + 852 {y}^2={x}^{3}+214i{x}+852i+852 y 2 = x 3 + 2 1 4 i x + 8 5 2 i + 8 5 2