Learn more

Refine search


Results (1-50 of 104 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
25600.2-a1 25600.2-a \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.312721490$ $3.231914471$ 4.042756438 \( -\frac{3456}{25} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 2\) , \( -4 i\bigr] \) ${y}^2={x}^{3}+2{x}-4i$
25600.2-a2 25600.2-a \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.312721490$ $1.615957235$ 4.042756438 \( -\frac{12579624}{625} a + \frac{2240568}{625} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 30 i - 8\) , \( -60 i - 28\bigr] \) ${y}^2={x}^{3}+\left(30i-8\right){x}-60i-28$
25600.2-a3 25600.2-a \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.312721490$ $1.615957235$ 4.042756438 \( \frac{12579624}{625} a + \frac{2240568}{625} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -30 i - 8\) , \( -60 i + 28\bigr] \) ${y}^2={x}^{3}+\left(-30i-8\right){x}-60i+28$
25600.2-a4 25600.2-a \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.250885960$ $3.231914471$ 4.042756438 \( \frac{1898208}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -13\) , \( 18\bigr] \) ${y}^2={x}^{3}-13{x}+18$
25600.2-b1 25600.2-b \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.897871193$ 1.795742386 \( -\frac{324134216}{390625} a - \frac{1619282312}{390625} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 70 i + 5\) , \( 159 i + 238\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(70i+5\right){x}+159i+238$
25600.2-b2 25600.2-b \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.897871193$ 1.795742386 \( \frac{324134216}{390625} a - \frac{1619282312}{390625} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( -70 i + 5\) , \( 159 i - 238\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(-70i+5\right){x}+159i-238$
25600.2-b3 25600.2-b \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.795742386$ 1.795742386 \( -\frac{1557376}{625} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 15\) , \( 25 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+15{x}+25i$
25600.2-b4 25600.2-b \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.795742386$ 1.795742386 \( \frac{252179168}{25} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -66\) , \( 230\bigr] \) ${y}^2={x}^{3}-{x}^{2}-66{x}+230$
25600.2-c1 25600.2-c \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.934841452$ 1.934841452 \( \frac{119136}{625} a + \frac{1036352}{625} \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( -4 i + 12\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(-4i+12\right){x}$
25600.2-c2 25600.2-c \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.967420726$ 1.934841452 \( -\frac{79113756}{390625} a + \frac{695553908}{390625} \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( 16 i - 48\) , \( -64 i + 32\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(16i-48\right){x}-64i+32$
25600.2-c3 25600.2-c \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.869682904$ 1.934841452 \( -\frac{2751872}{25} a + \frac{2323456}{25} \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( -4 i + 7\) , \( 10 i + 4\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(-4i+7\right){x}+10i+4$
25600.2-c4 25600.2-c \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.967420726$ 1.934841452 \( \frac{286742876}{625} a + \frac{195690268}{625} \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( -24 i + 152\) , \( -656 i - 208\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(-24i+152\right){x}-656i-208$
25600.2-d1 25600.2-d \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.934841452$ 1.934841452 \( -\frac{119136}{625} a + \frac{1036352}{625} \) \( \bigl[0\) , \( -i - 1\) , \( 0\) , \( 4 i + 12\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(4i+12\right){x}$
25600.2-d2 25600.2-d \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.967420726$ 1.934841452 \( \frac{79113756}{390625} a + \frac{695553908}{390625} \) \( \bigl[0\) , \( -i - 1\) , \( 0\) , \( -16 i - 48\) , \( 64 i + 32\bigr] \) ${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(-16i-48\right){x}+64i+32$
25600.2-d3 25600.2-d \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.869682904$ 1.934841452 \( \frac{2751872}{25} a + \frac{2323456}{25} \) \( \bigl[0\) , \( -i - 1\) , \( 0\) , \( 4 i + 7\) , \( -10 i + 4\bigr] \) ${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(4i+7\right){x}-10i+4$
25600.2-d4 25600.2-d \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.967420726$ 1.934841452 \( -\frac{286742876}{625} a + \frac{195690268}{625} \) \( \bigl[0\) , \( -i - 1\) , \( 0\) , \( 24 i + 152\) , \( 656 i - 208\bigr] \) ${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(24i+152\right){x}+656i-208$
25600.2-e1 25600.2-e \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.084866568$ $3.127360497$ 3.392768851 \( \frac{421696}{625} a + \frac{663328}{625} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 4 i + 2\) , \( -4 i - 2\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(4i+2\right){x}-4i-2$
25600.2-e2 25600.2-e \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.542433284$ $3.127360497$ 3.392768851 \( -\frac{29952}{25} a + \frac{10624}{5} \) \( \bigl[0\) , \( i\) , \( 0\) , \( 4 i + 3\) , \( 3 i - 4\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+\left(4i+3\right){x}+3i-4$
25600.2-e3 25600.2-e \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.271216642$ $1.563680248$ 3.392768851 \( \frac{18091224}{625} a + \frac{10253768}{625} \) \( \bigl[0\) , \( i\) , \( 0\) , \( 34 i + 13\) , \( 25 i + 70\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+\left(34i+13\right){x}+25i+70$
25600.2-e4 25600.2-e \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.084866568$ $1.563680248$ 3.392768851 \( -\frac{16691192}{5} a + \frac{311048}{5} \) \( \bigl[0\) , \( i\) , \( 0\) , \( 54 i + 53\) , \( 113 i - 254\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+\left(54i+53\right){x}+113i-254$
25600.2-f1 25600.2-f \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.689027116$ $1.016598393$ 3.434124507 \( -\frac{649216016}{25} a - \frac{494572808}{25} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -106 i - 213\) , \( -938 i - 1161\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-106i-213\right){x}-938i-1161$
25600.2-f2 25600.2-f \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.844513558$ $1.016598393$ 3.434124507 \( \frac{649216016}{25} a - \frac{494572808}{25} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( -106 i + 213\) , \( -1161 i - 938\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(-106i+213\right){x}-1161i-938$
25600.2-f3 25600.2-f \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.422256779$ $2.033196787$ 3.434124507 \( -\frac{3181056}{625} a - \frac{1129792}{625} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( -6 i + 13\) , \( -21 i - 18\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(-6i+13\right){x}-21i-18$
25600.2-f4 25600.2-f \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.844513558$ $2.033196787$ 3.434124507 \( \frac{3181056}{625} a - \frac{1129792}{625} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -6 i - 13\) , \( -18 i - 21\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-6i-13\right){x}-18i-21$
25600.2-f5 25600.2-f \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.689027116$ $1.016598393$ 3.434124507 \( -\frac{256910704}{390625} a - \frac{293256872}{390625} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -26 i + 27\) , \( -34 i - 129\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-26i+27\right){x}-34i-129$
25600.2-f6 25600.2-f \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.211128389$ $1.016598393$ 3.434124507 \( \frac{256910704}{390625} a - \frac{293256872}{390625} \) \( \bigl[0\) , \( i\) , \( 0\) , \( -26 i - 27\) , \( 129 i + 34\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+\left(-26i-27\right){x}+129i+34$
25600.2-g1 25600.2-g \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.287252687$ $3.127360497$ 3.593370833 \( -\frac{421696}{625} a + \frac{663328}{625} \) \( \bigl[0\) , \( i\) , \( 0\) , \( 4 i - 2\) , \( -2 i - 4\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+\left(4i-2\right){x}-2i-4$
25600.2-g2 25600.2-g \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.574505375$ $3.127360497$ 3.593370833 \( \frac{29952}{25} a + \frac{10624}{5} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 4 i - 3\) , \( 4 i - 3\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(4i-3\right){x}+4i-3$
25600.2-g3 25600.2-g \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.149010751$ $1.563680248$ 3.593370833 \( -\frac{18091224}{625} a + \frac{10253768}{625} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 34 i - 13\) , \( -70 i - 25\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(34i-13\right){x}-70i-25$
25600.2-g4 25600.2-g \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.149010751$ $1.563680248$ 3.593370833 \( \frac{16691192}{5} a + \frac{311048}{5} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 54 i - 53\) , \( 254 i - 113\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(54i-53\right){x}+254i-113$
25600.2-h1 25600.2-h \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.643884228$ $2.902337071$ 3.737538130 \( -\frac{64}{25} \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( 0\) , \( -4 i - 4\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}-4i-4$
25600.2-h2 25600.2-h \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.321942114$ $1.451168535$ 3.737538130 \( -\frac{10307536}{625} a + \frac{24381448}{625} \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( -20 i - 40\) , \( -76 i - 68\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(-20i-40\right){x}-76i-68$
25600.2-h3 25600.2-h \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.287768456$ $1.451168535$ 3.737538130 \( \frac{10307536}{625} a + \frac{24381448}{625} \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( -20 i + 40\) , \( -68 i - 76\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(-20i+40\right){x}-68i-76$
25600.2-h4 25600.2-h \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.287768456$ $2.902337071$ 3.737538130 \( \frac{438976}{5} \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( -12 i\) , \( 8 i - 8\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}-12i{x}+8i-8$
25600.2-i1 25600.2-i \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.135453623$ 2.270907247 \( -\frac{59648644}{625} a - \frac{119744792}{625} \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( 88 i + 40\) , \( -8 i - 376\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}+\left(88i+40\right){x}-8i-376$
25600.2-i2 25600.2-i \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.135453623$ 2.270907247 \( \frac{59648644}{625} a - \frac{119744792}{625} \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( 88 i - 40\) , \( 376 i + 8\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}+\left(88i-40\right){x}+376i+8$
25600.2-i3 25600.2-i \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.378484541$ 2.270907247 \( -\frac{893935595564}{244140625} a - \frac{1336401187352}{244140625} \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( 8 i + 440\) , \( -3784 i + 8\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}+\left(8i+440\right){x}-3784i+8$
25600.2-i4 25600.2-i \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.378484541$ 2.270907247 \( \frac{893935595564}{244140625} a - \frac{1336401187352}{244140625} \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( 8 i - 440\) , \( -8 i + 3784\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}+\left(8i-440\right){x}-8i+3784$
25600.2-i5 25600.2-i \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.756969082$ 2.270907247 \( -\frac{20720464}{15625} \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( -72 i\) , \( -280 i + 280\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}-72i{x}-280i+280$
25600.2-i6 25600.2-i \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.270907247$ 2.270907247 \( \frac{21296}{25} \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( 8 i\) , \( 8 i - 8\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}+8i{x}+8i-8$
25600.2-i7 25600.2-i \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.541814495$ 2.270907247 \( \frac{16384}{5} \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( -2 i\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}-2i{x}$
25600.2-i8 25600.2-i \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.513938165$ 2.270907247 \( \frac{488095744}{125} \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( -82 i\) , \( -232 i + 232\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}-82i{x}-232i+232$
25600.2-j1 25600.2-j \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.529780130$ 2.119120521 \( -\frac{35999730234}{390625} a - \frac{51700389912}{390625} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -346 i + 240\) , \( 404 i + 3316\bigr] \) ${y}^2={x}^{3}+\left(-346i+240\right){x}+404i+3316$
25600.2-j2 25600.2-j \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.529780130$ 2.119120521 \( \frac{35999730234}{390625} a - \frac{51700389912}{390625} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -346 i - 240\) , \( 3316 i + 404\bigr] \) ${y}^2={x}^{3}+\left(-346i-240\right){x}+3316i+404$
25600.2-j3 25600.2-j \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.059560260$ 2.119120521 \( \frac{237276}{625} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -26 i\) , \( 68 i + 68\bigr] \) ${y}^2={x}^{3}-26i{x}+68i+68$
25600.2-j4 25600.2-j \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.264890065$ 2.119120521 \( -\frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -266 i - 480\) , \( 2868 i - 3852\bigr] \) ${y}^2={x}^{3}+\left(-266i-480\right){x}+2868i-3852$
25600.2-j5 25600.2-j \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.264890065$ 2.119120521 \( \frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -266 i + 480\) , \( -3852 i + 2868\bigr] \) ${y}^2={x}^{3}+\left(-266i+480\right){x}-3852i+2868$
25600.2-j6 25600.2-j \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.119120521$ 2.119120521 \( \frac{148176}{25} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 14 i\) , \( 12 i + 12\bigr] \) ${y}^2={x}^{3}+14i{x}+12i+12$
25600.2-j7 25600.2-j \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.238241043$ 2.119120521 \( \frac{55296}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 4 i\) , \( -2 i - 2\bigr] \) ${y}^2={x}^{3}+4i{x}-2i-2$
25600.2-j8 25600.2-j \(\Q(\sqrt{-1}) \) \( 2^{10} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.059560260$ 2.119120521 \( \frac{132304644}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 214 i\) , \( 852 i + 852\bigr] \) ${y}^2={x}^{3}+214i{x}+852i+852$
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.