Learn more

Refine search


Results (10 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
200.2-a1 200.2-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.498444490$ 0.749222245 \( -\frac{35999730234}{390625} a - \frac{51700389912}{390625} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -31 i - 44\) , \( 94 i + 106\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-31i-44\right){x}+94i+106$
200.2-a2 200.2-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.498444490$ 0.749222245 \( \frac{35999730234}{390625} a - \frac{51700389912}{390625} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 30 i - 44\) , \( -138 i + 76\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(30i-44\right){x}-138i+76$
200.2-a3 200.2-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \) 0 $\Z/4\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.996888981$ 0.749222245 \( \frac{237276}{625} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( -4\) , \( -6 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}-4{x}-6i$
200.2-a4 200.2-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.749222245$ 0.749222245 \( -\frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 60 i - 34\) , \( 14 i + 180\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(60i-34\right){x}+14i+180$
200.2-a5 200.2-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.749222245$ 0.749222245 \( \frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -61 i - 34\) , \( -48 i + 240\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-61i-34\right){x}-48i+240$
200.2-a6 200.2-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $5.993777963$ 0.749222245 \( \frac{148176}{25} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -i + 1\) , \( i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+1\right){x}+i$
200.2-a7 200.2-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $5.993777963$ 0.749222245 \( \frac{55296}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -2\) , \( 1\bigr] \) ${y}^2={x}^{3}-2{x}+1$
200.2-a8 200.2-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.996888981$ 0.749222245 \( \frac{132304644}{5} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -i + 26\) , \( 66 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+26\right){x}+66i$
200.2-a9 200.2-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.749222245$ 0.749222245 \( -\frac{15332659200009}{625} a + \frac{5763174879987}{625} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 480 i - 694\) , \( -7778 i + 5556\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(480i-694\right){x}-7778i+5556$
200.2-a10 200.2-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.749222245$ 0.749222245 \( \frac{15332659200009}{625} a + \frac{5763174879987}{625} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -481 i - 694\) , \( 7084 i + 6036\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-481i-694\right){x}+7084i+6036$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.