Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
200.2-a1 |
200.2-a |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
200.2 |
\( 2^{3} \cdot 5^{2} \) |
\( 2^{10} \cdot 5^{10} \) |
$0.67209$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1$ |
$1.498444490$ |
0.749222245 |
\( -\frac{35999730234}{390625} a - \frac{51700389912}{390625} \) |
\( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -31 i - 44\) , \( 94 i + 106\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-31i-44\right){x}+94i+106$ |
200.2-a2 |
200.2-a |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
200.2 |
\( 2^{3} \cdot 5^{2} \) |
\( 2^{10} \cdot 5^{10} \) |
$0.67209$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1$ |
$1.498444490$ |
0.749222245 |
\( \frac{35999730234}{390625} a - \frac{51700389912}{390625} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( 30 i - 44\) , \( -138 i + 76\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(30i-44\right){x}-138i+76$ |
200.2-a3 |
200.2-a |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
200.2 |
\( 2^{3} \cdot 5^{2} \) |
\( 2^{8} \cdot 5^{8} \) |
$0.67209$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/4\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1$ |
$2.996888981$ |
0.749222245 |
\( \frac{237276}{625} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( -4\) , \( -6 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}-4{x}-6i$ |
200.2-a4 |
200.2-a |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
200.2 |
\( 2^{3} \cdot 5^{2} \) |
\( 2^{11} \cdot 5^{17} \) |
$0.67209$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.749222245$ |
0.749222245 |
\( -\frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( 60 i - 34\) , \( 14 i + 180\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(60i-34\right){x}+14i+180$ |
200.2-a5 |
200.2-a |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
200.2 |
\( 2^{3} \cdot 5^{2} \) |
\( 2^{11} \cdot 5^{17} \) |
$0.67209$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.749222245$ |
0.749222245 |
\( \frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} \) |
\( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -61 i - 34\) , \( -48 i + 240\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-61i-34\right){x}-48i+240$ |
200.2-a6 |
200.2-a |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
200.2 |
\( 2^{3} \cdot 5^{2} \) |
\( 2^{4} \cdot 5^{4} \) |
$0.67209$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$1$ |
$5.993777963$ |
0.749222245 |
\( \frac{148176}{25} \) |
\( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -i + 1\) , \( i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+1\right){x}+i$ |
200.2-a7 |
200.2-a |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
200.2 |
\( 2^{3} \cdot 5^{2} \) |
\( 2^{8} \cdot 5^{2} \) |
$0.67209$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$5.993777963$ |
0.749222245 |
\( \frac{55296}{5} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -2\) , \( 1\bigr] \) |
${y}^2={x}^{3}-2{x}+1$ |
200.2-a8 |
200.2-a |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
200.2 |
\( 2^{3} \cdot 5^{2} \) |
\( 2^{8} \cdot 5^{2} \) |
$0.67209$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$2.996888981$ |
0.749222245 |
\( \frac{132304644}{5} \) |
\( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -i + 26\) , \( 66 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+26\right){x}+66i$ |
200.2-a9 |
200.2-a |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
200.2 |
\( 2^{3} \cdot 5^{2} \) |
\( 2^{11} \cdot 5^{5} \) |
$0.67209$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$4$ |
\( 2^{2} \) |
$1$ |
$0.749222245$ |
0.749222245 |
\( -\frac{15332659200009}{625} a + \frac{5763174879987}{625} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( 480 i - 694\) , \( -7778 i + 5556\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(480i-694\right){x}-7778i+5556$ |
200.2-a10 |
200.2-a |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
200.2 |
\( 2^{3} \cdot 5^{2} \) |
\( 2^{11} \cdot 5^{5} \) |
$0.67209$ |
$(a+1), (-a-2), (2a+1)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$4$ |
\( 2^{2} \) |
$1$ |
$0.749222245$ |
0.749222245 |
\( \frac{15332659200009}{625} a + \frac{5763174879987}{625} \) |
\( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -481 i - 694\) , \( 7084 i + 6036\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-481i-694\right){x}+7084i+6036$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.