Learn more

Refine search


Results (10 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
200.2-a1 200.2-a Q(1)\Q(\sqrt{-1}) 2352 2^{3} \cdot 5^{2} 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 1.4984444901.498444490 0.749222245 35999730234390625a51700389912390625 -\frac{35999730234}{390625} a - \frac{51700389912}{390625} [i+1 \bigl[i + 1 , i i , i+1 i + 1 , 31i44 -31 i - 44 , 94i+106] 94 i + 106\bigr] y2+(i+1)xy+(i+1)y=x3+ix2+(31i44)x+94i+106{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-31i-44\right){x}+94i+106
200.2-a2 200.2-a Q(1)\Q(\sqrt{-1}) 2352 2^{3} \cdot 5^{2} 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 1.4984444901.498444490 0.749222245 35999730234390625a51700389912390625 \frac{35999730234}{390625} a - \frac{51700389912}{390625} [i+1 \bigl[i + 1 , i i , 0 0 , 30i44 30 i - 44 , 138i+76] -138 i + 76\bigr] y2+(i+1)xy=x3+ix2+(30i44)x138i+76{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(30i-44\right){x}-138i+76
200.2-a3 200.2-a Q(1)\Q(\sqrt{-1}) 2352 2^{3} \cdot 5^{2} 0 Z/4ZZ/4Z\Z/4\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 2.9968889812.996888981 0.749222245 237276625 \frac{237276}{625} [i+1 \bigl[i + 1 , i i , 0 0 , 4 -4 , 6i] -6 i\bigr] y2+(i+1)xy=x3+ix24x6i{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}-4{x}-6i
200.2-a4 200.2-a Q(1)\Q(\sqrt{-1}) 2352 2^{3} \cdot 5^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 0.7492222450.749222245 0.749222245 22845545233191152587890625a+135893651813613152587890625 -\frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} [i+1 \bigl[i + 1 , i i , 0 0 , 60i34 60 i - 34 , 14i+180] 14 i + 180\bigr] y2+(i+1)xy=x3+ix2+(60i34)x+14i+180{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(60i-34\right){x}+14i+180
200.2-a5 200.2-a Q(1)\Q(\sqrt{-1}) 2352 2^{3} \cdot 5^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 0.7492222450.749222245 0.749222245 22845545233191152587890625a+135893651813613152587890625 \frac{22845545233191}{152587890625} a + \frac{135893651813613}{152587890625} [i+1 \bigl[i + 1 , i i , i+1 i + 1 , 61i34 -61 i - 34 , 48i+240] -48 i + 240\bigr] y2+(i+1)xy+(i+1)y=x3+ix2+(61i34)x48i+240{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-61i-34\right){x}-48i+240
200.2-a6 200.2-a Q(1)\Q(\sqrt{-1}) 2352 2^{3} \cdot 5^{2} 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 5.9937779635.993777963 0.749222245 14817625 \frac{148176}{25} [i+1 \bigl[i + 1 , i i , i+1 i + 1 , i+1 -i + 1 , i] i\bigr] y2+(i+1)xy+(i+1)y=x3+ix2+(i+1)x+i{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+1\right){x}+i
200.2-a7 200.2-a Q(1)\Q(\sqrt{-1}) 2352 2^{3} \cdot 5^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 5.9937779635.993777963 0.749222245 552965 \frac{55296}{5} [0 \bigl[0 , 0 0 , 0 0 , 2 -2 , 1] 1\bigr] y2=x32x+1{y}^2={x}^{3}-2{x}+1
200.2-a8 200.2-a Q(1)\Q(\sqrt{-1}) 2352 2^{3} \cdot 5^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 2.9968889812.996888981 0.749222245 1323046445 \frac{132304644}{5} [i+1 \bigl[i + 1 , i i , i+1 i + 1 , i+26 -i + 26 , 66i] 66 i\bigr] y2+(i+1)xy+(i+1)y=x3+ix2+(i+26)x+66i{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+26\right){x}+66i
200.2-a9 200.2-a Q(1)\Q(\sqrt{-1}) 2352 2^{3} \cdot 5^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 0.7492222450.749222245 0.749222245 15332659200009625a+5763174879987625 -\frac{15332659200009}{625} a + \frac{5763174879987}{625} [i+1 \bigl[i + 1 , i i , 0 0 , 480i694 480 i - 694 , 7778i+5556] -7778 i + 5556\bigr] y2+(i+1)xy=x3+ix2+(480i694)x7778i+5556{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(480i-694\right){x}-7778i+5556
200.2-a10 200.2-a Q(1)\Q(\sqrt{-1}) 2352 2^{3} \cdot 5^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 0.7492222450.749222245 0.749222245 15332659200009625a+5763174879987625 \frac{15332659200009}{625} a + \frac{5763174879987}{625} [i+1 \bigl[i + 1 , i i , i+1 i + 1 , 481i694 -481 i - 694 , 7084i+6036] 7084 i + 6036\bigr] y2+(i+1)xy+(i+1)y=x3+ix2+(481i694)x+7084i+6036{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-481i-694\right){x}+7084i+6036
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.