Properties

Label 2.0.4.1-16200.2-d2
Base field Q(1)\Q(\sqrt{-1})
Conductor norm 16200 16200
CM no
Base change yes
Q-curve yes
Torsion order 4 4
Rank 1 1

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field Q(1)\Q(\sqrt{-1})

Generator ii, with minimal polynomial x2+1 x^{2} + 1 ; class number 11.

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
 
Copy content gp:K = nfinit(Polrev([1, 0, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
 

Weierstrass equation

y2+(i+1)xy+(i+1)y=x3+ix2+(i+36)x18i{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+36\right){x}-18i
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([1,1]),K([0,1]),K([1,1]),K([36,-1]),K([0,-18])])
 
Copy content gp:E = ellinit([Polrev([1,1]),Polrev([0,1]),Polrev([1,1]),Polrev([36,-1]),Polrev([0,-18])], K);
 
Copy content magma:E := EllipticCurve([K![1,1],K![0,1],K![1,1],K![36,-1],K![0,-18]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

ZZ/2ZZ/2Z\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(22i:78i+56:1)\left(-22 i : 78 i + 56 : 1\right)0.748768142860921907689301588435930226210.74876814286092190768930158843593022621\infty
(7i:3i4:1)\left(-7 i : 3 i - 4 : 1\right)0022
(12i:34i14:1)\left(\frac{1}{2} i : -\frac{3}{4} i - \frac{1}{4} : 1\right)0022

Invariants

Conductor: N\frak{N} = (90i+90)(90i+90) = (i+1)3(i2)(2i+1)(3)2(i+1)^{3}\cdot(-i-2)\cdot(2i+1)\cdot(3)^{2}
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 16200 16200 = 2355922^{3}\cdot5\cdot5\cdot9^{2}
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: Δ\Delta = 2624400-2624400
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (2624400)(-2624400) = (i+1)8(i2)2(2i+1)2(3)8(i+1)^{8}\cdot(-i-2)^{2}\cdot(2i+1)^{2}\cdot(3)^{8}
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 6887475360000 6887475360000 = 285252982^{8}\cdot5^{2}\cdot5^{2}\cdot9^{8}
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: jj = 470596225 \frac{470596}{225}
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 1 1
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: rr = 11
Regulator: Reg(E/K)\mathrm{Reg}(E/K) 0.74876814286092190768930158843593022621 0.74876814286092190768930158843593022621
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) 1.49753628572184381537860317687186045242 1.49753628572184381537860317687186045242
Global period: Ω(E/K)\Omega(E/K) 2.3210579238296434060638927348241762716 2.3210579238296434060638927348241762716
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 32 32  =  222222\cdot2\cdot2\cdot2^{2}
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 44
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 3.4758684621970984666435975087353492155 3.4758684621970984666435975087353492155
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

3.475868462L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/212.3210581.49753632422.0000003.475868462\begin{aligned}3.475868462 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 2.321058 \cdot 1.497536 \cdot 32 } { {4^2 \cdot 2.000000} } \\ & \approx 3.475868462 \end{aligned}

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 4 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(i+1)(i+1) 22 22 I1I_{1}^{*} Additive 11 33 88 00
(i2)(-i-2) 55 22 I2I_{2} Split multiplicative 1-1 11 22 22
(2i+1)(2i+1) 55 22 I2I_{2} Split multiplicative 1-1 11 22 22
(3)(3) 99 44 I2I_{2}^{*} Additive 11 22 88 22

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
22 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 16200.2-d consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is a Q\Q-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
Q\Q 360.e3
Q\Q 720.f3