Generator i, with minimal polynomial
x2+1; class number 1.
sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
gp:K = nfinit(Polrev([1, 0, 1]));
magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
y2+(i+1)xy+(i+1)y=x3+ix2+(−i+36)x−18i
sage:E = EllipticCurve([K([1,1]),K([0,1]),K([1,1]),K([36,-1]),K([0,-18])])
gp:E = ellinit([Polrev([1,1]),Polrev([0,1]),Polrev([1,1]),Polrev([36,-1]),Polrev([0,-18])], K);
magma:E := EllipticCurve([K![1,1],K![0,1],K![1,1],K![36,-1],K![0,-18]]);
This is a global minimal model.
sage:E.is_global_minimal_model()
Z⊕Z/2Z⊕Z/2Z
P | h^(P) | Order |
(−22i:78i+56:1) | 0.74876814286092190768930158843593022621 | ∞ |
(−7i:3i−4:1) | 0 | 2 |
(21i:−43i−41:1) | 0 | 2 |
Conductor: |
N |
= |
(90i+90) |
= |
(i+1)3⋅(−i−2)⋅(2i+1)⋅(3)2 |
sage:E.conductor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
|
Conductor norm: |
N(N) |
= |
16200 |
= |
23⋅5⋅5⋅92 |
sage:E.conductor().norm()
gp:idealnorm(ellglobalred(E)[1])
magma:Norm(Conductor(E));
|
Discriminant: |
Δ |
= |
−2624400 |
Discriminant ideal:
|
Dmin=(Δ)
|
= |
(−2624400) |
= |
(i+1)8⋅(−i−2)2⋅(2i+1)2⋅(3)8 |
sage:E.discriminant()
gp:E.disc
magma:Discriminant(E);
|
Discriminant norm:
|
N(Dmin)=N(Δ)
|
= |
6887475360000 |
= |
28⋅52⋅52⋅98 |
sage:E.discriminant().norm()
gp:norm(E.disc)
magma:Norm(Discriminant(E));
|
j-invariant: |
j |
= |
225470596 |
sage:E.j_invariant()
gp:E.j
magma:jInvariant(E);
|
Endomorphism ring: |
End(E) |
= |
Z
|
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm(), E.cm_discriminant()
magma:HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) |
= |
SU(2) |
Analytic rank: |
ran | = |
1
|
sage:E.rank()
magma:Rank(E);
|
Mordell-Weil rank: |
r |
= |
1 |
Regulator:
|
Reg(E/K) |
≈ |
0.74876814286092190768930158843593022621
|
Néron-Tate Regulator:
|
RegNT(E/K) |
≈ |
1.49753628572184381537860317687186045242
|
Global period: |
Ω(E/K) | ≈ |
2.3210579238296434060638927348241762716 |
Tamagawa product: |
∏pcp | = |
32
= 2⋅2⋅2⋅22
|
Torsion order: |
#E(K)tor | = |
4 |
Special value: |
L(r)(E/K,1)/r! |
≈ | 3.4758684621970984666435975087353492155 |
Analytic order of Ш:
|
Шan | = |
1 (rounded) |
3.475868462≈L′(E/K,1)=?#E(K)tor2⋅∣dK∣1/2#Ш(E/K)⋅Ω(E/K)⋅RegNT(E/K)⋅∏pcp≈42⋅2.0000001⋅2.321058⋅1.497536⋅32≈3.475868462
sage:E.local_data()
magma:LocalInformation(E);
This elliptic curve is not semistable.
There
are 4 primes p
of bad reduction.
This curve has non-trivial cyclic isogenies of degree d for d=
2.
Its isogeny class
16200.2-d
consists of curves linked by isogenies of
degrees dividing 4.