Base field \(\Q(\sqrt{-1}) \)
Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).
Elliptic curves in class 16200.2-d over \(\Q(\sqrt{-1}) \)
Isogeny class 16200.2-d contains 4 curves linked by isogenies of degrees dividing 4.
Rank
Rank: \( 1 \)Isogeny matrix
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)