Base field \(\Q(\sqrt{-1}) \)
Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $\left(7 i + 12 : -32 i + 2 : 1\right)$ | $1.3675225853260692720065319091861229947$ | $\infty$ |
| $\left(-8 i - 24 : 16 i + 8 : 1\right)$ | $0$ | $2$ |
| $\left(\frac{5}{2} i + 12 : -\frac{29}{4} i - \frac{19}{4} : 1\right)$ | $0$ | $2$ |
Invariants
| Conductor: | $\frak{N}$ | = | \((90i+90)\) | = | \((i+1)^{3}\cdot(-i-2)\cdot(2i+1)\cdot(3)^{2}\) |
|
| |||||
| Conductor norm: | $N(\frak{N})$ | = | \( 16200 \) | = | \(2^{3}\cdot5\cdot5\cdot9^{2}\) |
|
| |||||
| Discriminant: | $\Delta$ | = | $-68234400i-25660800$ | ||
| Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((-68234400i-25660800)\) | = | \((i+1)^{10}\cdot(-i-2)^{8}\cdot(2i+1)^{2}\cdot(3)^{6}\) |
|
| |||||
| Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 5314410000000000 \) | = | \(2^{10}\cdot5^{8}\cdot5^{2}\cdot9^{6}\) |
|
| |||||
| j-invariant: | $j$ | = | \( -\frac{35999730234}{390625} i - \frac{51700389912}{390625} \) | ||
|
| |||||
| Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
|
| |||||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | ||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|
|||
| Mordell-Weil rank: | $r$ | = | \(1\) |
| Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 1.3675225853260692720065319091861229947 \) |
| Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 2.7350451706521385440130638183722459894 \) |
| Global period: | $\Omega(E/K)$ | ≈ | \( 0.998962993947007493380119256262311326020 \) |
| Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 32 \) = \(2\cdot2\cdot2\cdot2^{2}\) |
| Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(4\) |
| Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 2.7322089122549643531186346968677462312 \) |
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}2.732208912 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 0.998963 \cdot 2.735045 \cdot 32 } { {4^2 \cdot 2.000000} } \\ & \approx 2.732208912 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $\frak{p}$ of bad reduction.
| $\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
|---|---|---|---|---|---|---|---|---|
| \((i+1)\) | \(2\) | \(2\) | \(III^{*}\) | Additive | \(1\) | \(3\) | \(10\) | \(0\) |
| \((-i-2)\) | \(5\) | \(2\) | \(I_{8}\) | Non-split multiplicative | \(1\) | \(1\) | \(8\) | \(8\) |
| \((2i+1)\) | \(5\) | \(2\) | \(I_{2}\) | Non-split multiplicative | \(1\) | \(1\) | \(2\) | \(2\) |
| \((3)\) | \(9\) | \(4\) | \(I_0^{*}\) | Additive | \(1\) | \(2\) | \(6\) | \(0\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(2\) | 2Cs |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 4 and 8.
Its isogeny class
16200.2-a
consists of curves linked by isogenies of
degrees dividing 16.
Base change
This elliptic curve is a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.