Base field \(\Q(\sqrt{-3}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
gp: K = nfinit(Polrev([1, -1, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([0,0]),K([-1,0]),K([0,0]),K([5136,-7520]),K([241408,-119424])])
gp: E = ellinit([Polrev([0,0]),Polrev([-1,0]),Polrev([0,0]),Polrev([5136,-7520]),Polrev([241408,-119424])], K);
magma: E := EllipticCurve([K![0,0],K![-1,0],K![0,0],K![5136,-7520],K![241408,-119424]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((-224a+112)\) | = | \((-2a+1)\cdot(2)^{4}\cdot(-3a+1)\cdot(3a-2)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 37632 \) | = | \(3\cdot4^{4}\cdot7\cdot7\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((1509614804992a+764032159744)\) | = | \((-2a+1)\cdot(2)^{12}\cdot(-3a+1)^{4}\cdot(3a-2)^{16}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 4016076260413670474907648 \) | = | \(3\cdot4^{12}\cdot7^{4}\cdot7^{16}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( -\frac{1866593950165482334}{99698791708803} a + \frac{793626053533786727}{99698791708803} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(1\) |
Generator | $\left(-72 a - \frac{98}{9} : 84 a - \frac{11998}{27} : 1\right)$ |
Height | \(1.4925984173890274178188752072631063538\) |
Torsion structure: | \(\Z/4\Z\) |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| |
Torsion generator: | $\left(-16 a - 70 : -784 a + 294 : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 1 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(1\) | ||
Regulator: | \( 1.4925984173890274178188752072631063538 \) | ||
Period: | \( 0.10775961620464087257951965838643977477 \) | ||
Tamagawa product: | \( 128 \) = \(1\cdot2\cdot2^{2}\cdot2^{4}\) | ||
Torsion order: | \(4\) | ||
Leading coefficient: | \( 2.9715864112555461979447017745200648477 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((-2a+1)\) | \(3\) | \(1\) | \(I_{1}\) | Non-split multiplicative | \(1\) | \(1\) | \(1\) | \(1\) |
\((2)\) | \(4\) | \(2\) | \(I_{4}^{*}\) | Additive | \(1\) | \(4\) | \(12\) | \(0\) |
\((-3a+1)\) | \(7\) | \(4\) | \(I_{4}\) | Split multiplicative | \(-1\) | \(1\) | \(4\) | \(4\) |
\((3a-2)\) | \(7\) | \(16\) | \(I_{16}\) | Split multiplicative | \(-1\) | \(1\) | \(16\) | \(16\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 4, 8 and 16.
Its isogeny class
37632.2-f
consists of curves linked by isogenies of
degrees dividing 16.
Base change
This elliptic curve is a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.