Properties

Label 2.0.3.1-37632.2-f5
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 37632 \)
CM no
Base change no
Q-curve yes
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}-{x}^{2}+\left(-7520a+5136\right){x}-119424a+241408\)
sage: E = EllipticCurve([K([0,0]),K([-1,0]),K([0,0]),K([5136,-7520]),K([241408,-119424])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([-1,0]),Polrev([0,0]),Polrev([5136,-7520]),Polrev([241408,-119424])], K);
 
magma: E := EllipticCurve([K![0,0],K![-1,0],K![0,0],K![5136,-7520],K![241408,-119424]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-224a+112)\) = \((-2a+1)\cdot(2)^{4}\cdot(-3a+1)\cdot(3a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 37632 \) = \(3\cdot4^{4}\cdot7\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1509614804992a+764032159744)\) = \((-2a+1)\cdot(2)^{12}\cdot(-3a+1)^{4}\cdot(3a-2)^{16}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 4016076260413670474907648 \) = \(3\cdot4^{12}\cdot7^{4}\cdot7^{16}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1866593950165482334}{99698791708803} a + \frac{793626053533786727}{99698791708803} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-72 a - \frac{98}{9} : 84 a - \frac{11998}{27} : 1\right)$
Height \(1.4925984173890274178188752072631063538\)
Torsion structure: \(\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-16 a - 70 : -784 a + 294 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.4925984173890274178188752072631063538 \)
Period: \( 0.10775961620464087257951965838643977477 \)
Tamagawa product: \( 128 \)  =  \(1\cdot2\cdot2^{2}\cdot2^{4}\)
Torsion order: \(4\)
Leading coefficient: \( 2.9715864112555461979447017745200648477 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a+1)\) \(3\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((2)\) \(4\) \(2\) \(I_{4}^{*}\) Additive \(1\) \(4\) \(12\) \(0\)
\((-3a+1)\) \(7\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((3a-2)\) \(7\) \(16\) \(I_{16}\) Split multiplicative \(-1\) \(1\) \(16\) \(16\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 8 and 16.
Its isogeny class 37632.2-f consists of curves linked by isogenies of degrees dividing 16.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.