| Label |
Base field |
Conductor norm |
Conductor label |
Isogeny class |
Weierstrass coefficients |
| 49.1-CMa1 |
\(\Q(\sqrt{-3}) \)
|
49 |
49.1 |
49.1-CMa |
\( \bigl[0\) , \( a + 1\) , \( a\) , \( a\) , \( 0\bigr] \) |
| 49.3-CMa1 |
\(\Q(\sqrt{-3}) \)
|
49 |
49.3 |
49.3-CMa |
\( \bigl[0\) , \( -a - 1\) , \( a + 1\) , \( a\) , \( -a\bigr] \) |
| 73.1-a1 |
\(\Q(\sqrt{-3}) \)
|
73 |
73.1 |
73.1-a |
\( \bigl[1\) , \( a + 1\) , \( 0\) , \( 6 a + 10\) , \( -11 a + 20\bigr] \) |
| 73.1-a2 |
\(\Q(\sqrt{-3}) \)
|
73 |
73.1 |
73.1-a |
\( \bigl[a + 1\) , \( 1\) , \( 1\) , \( 5\) , \( -4 a + 4\bigr] \) |
| 73.1-a3 |
\(\Q(\sqrt{-3}) \)
|
73 |
73.1 |
73.1-a |
\( \bigl[a + 1\) , \( 1\) , \( 1\) , \( 0\) , \( 0\bigr] \) |
| 73.1-a4 |
\(\Q(\sqrt{-3}) \)
|
73 |
73.1 |
73.1-a |
\( \bigl[1\) , \( a + 1\) , \( 0\) , \( 11 a + 5\) , \( -20 a + 11\bigr] \) |
| 73.2-a1 |
\(\Q(\sqrt{-3}) \)
|
73 |
73.2 |
73.2-a |
\( \bigl[1\) , \( -a - 1\) , \( 1\) , \( -4 a + 14\) , \( 16 a - 6\bigr] \) |
| 73.2-a2 |
\(\Q(\sqrt{-3}) \)
|
73 |
73.2 |
73.2-a |
\( \bigl[a + 1\) , \( a - 1\) , \( 1\) , \( -6 a - 1\) , \( 4 a\bigr] \) |
| 73.2-a3 |
\(\Q(\sqrt{-3}) \)
|
73 |
73.2 |
73.2-a |
\( \bigl[a + 1\) , \( a - 1\) , \( 1\) , \( -a - 1\) , \( 0\bigr] \) |
| 73.2-a4 |
\(\Q(\sqrt{-3}) \)
|
73 |
73.2 |
73.2-a |
\( \bigl[1\) , \( -a - 1\) , \( 1\) , \( -9 a + 14\) , \( 30 a - 24\bigr] \) |
| 75.1-a1 |
\(\Q(\sqrt{-3}) \)
|
75 |
75.1 |
75.1-a |
\( \bigl[1\) , \( 1\) , \( 1\) , \( -110\) , \( -880\bigr] \) |
| 75.1-a2 |
\(\Q(\sqrt{-3}) \)
|
75 |
75.1 |
75.1-a |
\( \bigl[1\) , \( 1\) , \( 1\) , \( 0\) , \( 0\bigr] \) |
| 75.1-a3 |
\(\Q(\sqrt{-3}) \)
|
75 |
75.1 |
75.1-a |
\( \bigl[1\) , \( 1\) , \( 1\) , \( 35\) , \( -28\bigr] \) |
| 75.1-a4 |
\(\Q(\sqrt{-3}) \)
|
75 |
75.1 |
75.1-a |
\( \bigl[1\) , \( 1\) , \( 1\) , \( -10\) , \( -10\bigr] \) |
| 75.1-a5 |
\(\Q(\sqrt{-3}) \)
|
75 |
75.1 |
75.1-a |
\( \bigl[1\) , \( 1\) , \( 1\) , \( -5\) , \( 2\bigr] \) |
| 75.1-a6 |
\(\Q(\sqrt{-3}) \)
|
75 |
75.1 |
75.1-a |
\( \bigl[1\) , \( 1\) , \( 1\) , \( -135\) , \( -660\bigr] \) |
| 75.1-a7 |
\(\Q(\sqrt{-3}) \)
|
75 |
75.1 |
75.1-a |
\( \bigl[1\) , \( 1\) , \( 1\) , \( -80\) , \( 242\bigr] \) |
| 75.1-a8 |
\(\Q(\sqrt{-3}) \)
|
75 |
75.1 |
75.1-a |
\( \bigl[1\) , \( 1\) , \( 1\) , \( -2160\) , \( -39540\bigr] \) |
| 81.1-CMa1 |
\(\Q(\sqrt{-3}) \)
|
81 |
81.1 |
81.1-CMa |
\( \bigl[0\) , \( 0\) , \( 1\) , \( 0\) , \( 0\bigr] \) |
| 81.1-CMa2 |
\(\Q(\sqrt{-3}) \)
|
81 |
81.1 |
81.1-CMa |
\( \bigl[0\) , \( 0\) , \( 1\) , \( -30\) , \( 63\bigr] \) |
| 121.1-a1 |
\(\Q(\sqrt{-3}) \)
|
121 |
121.1 |
121.1-a |
\( \bigl[0\) , \( -1\) , \( 1\) , \( -7820\) , \( -263580\bigr] \) |
| 121.1-a2 |
\(\Q(\sqrt{-3}) \)
|
121 |
121.1 |
121.1-a |
\( \bigl[0\) , \( -1\) , \( 1\) , \( -10\) , \( -20\bigr] \) |
| 121.1-a3 |
\(\Q(\sqrt{-3}) \)
|
121 |
121.1 |
121.1-a |
\( \bigl[0\) , \( -1\) , \( 1\) , \( 0\) , \( 0\bigr] \) |
| 124.1-a1 |
\(\Q(\sqrt{-3}) \)
|
124 |
124.1 |
124.1-a |
\( \bigl[a + 1\) , \( a\) , \( a\) , \( 1300 a - 550\) , \( -9800 a - 7280\bigr] \) |
| 124.1-a2 |
\(\Q(\sqrt{-3}) \)
|
124 |
124.1 |
124.1-a |
\( \bigl[a + 1\) , \( a\) , \( a\) , \( 0\) , \( 0\bigr] \) |
| 124.1-a3 |
\(\Q(\sqrt{-3}) \)
|
124 |
124.1 |
124.1-a |
\( \bigl[a + 1\) , \( a\) , \( a\) , \( -15 a + 5\) , \( -7 a + 21\bigr] \) |
| 124.2-a1 |
\(\Q(\sqrt{-3}) \)
|
124 |
124.2 |
124.2-a |
\( \bigl[a\) , \( a - 1\) , \( a\) , \( -1301 a + 751\) , \( 10550 a - 16530\bigr] \) |
| 124.2-a2 |
\(\Q(\sqrt{-3}) \)
|
124 |
124.2 |
124.2-a |
\( \bigl[a\) , \( a - 1\) , \( a\) , \( -a + 1\) , \( 0\bigr] \) |
| 124.2-a3 |
\(\Q(\sqrt{-3}) \)
|
124 |
124.2 |
124.2-a |
\( \bigl[a\) , \( a - 1\) , \( a\) , \( 14 a - 9\) , \( -3 a + 9\bigr] \) |
| 144.1-CMa1 |
\(\Q(\sqrt{-3}) \)
|
144 |
144.1 |
144.1-CMa |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 1\bigr] \) |
| 144.1-CMa2 |
\(\Q(\sqrt{-3}) \)
|
144 |
144.1 |
144.1-CMa |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -15\) , \( 22\bigr] \) |
| 147.2-a1 |
\(\Q(\sqrt{-3}) \)
|
147 |
147.2 |
147.2-a |
\( \bigl[1\) , \( 0\) , \( 0\) , \( -470 a + 321\) , \( 1866 a - 3772\bigr] \) |
| 147.2-a2 |
\(\Q(\sqrt{-3}) \)
|
147 |
147.2 |
147.2-a |
\( \bigl[1\) , \( 0\) , \( 0\) , \( 470 a - 149\) , \( -1866 a - 1906\bigr] \) |
| 147.2-a3 |
\(\Q(\sqrt{-3}) \)
|
147 |
147.2 |
147.2-a |
\( \bigl[1\) , \( 0\) , \( 0\) , \( -34\) , \( -217\bigr] \) |
| 147.2-a4 |
\(\Q(\sqrt{-3}) \)
|
147 |
147.2 |
147.2-a |
\( \bigl[1\) , \( 0\) , \( 0\) , \( 1\) , \( 0\bigr] \) |
| 147.2-a5 |
\(\Q(\sqrt{-3}) \)
|
147 |
147.2 |
147.2-a |
\( \bigl[1\) , \( 0\) , \( 0\) , \( -4\) , \( -1\bigr] \) |
| 147.2-a6 |
\(\Q(\sqrt{-3}) \)
|
147 |
147.2 |
147.2-a |
\( \bigl[1\) , \( 0\) , \( 0\) , \( -39\) , \( 90\bigr] \) |
| 147.2-a7 |
\(\Q(\sqrt{-3}) \)
|
147 |
147.2 |
147.2-a |
\( \bigl[1\) , \( 0\) , \( 0\) , \( -49\) , \( -136\bigr] \) |
| 147.2-a8 |
\(\Q(\sqrt{-3}) \)
|
147 |
147.2 |
147.2-a |
\( \bigl[1\) , \( 0\) , \( 0\) , \( -784\) , \( -8515\bigr] \) |
| 171.1-a1 |
\(\Q(\sqrt{-3}) \)
|
171 |
171.1 |
171.1-a |
\( \bigl[1\) , \( -1\) , \( a + 1\) , \( -5 a - 5\) , \( 9 a + 3\bigr] \) |
| 171.1-a2 |
\(\Q(\sqrt{-3}) \)
|
171 |
171.1 |
171.1-a |
\( \bigl[1\) , \( -1\) , \( a + 1\) , \( -20 a + 25\) , \( 18 a + 48\bigr] \) |
| 171.1-a3 |
\(\Q(\sqrt{-3}) \)
|
171 |
171.1 |
171.1-a |
\( \bigl[1\) , \( -1\) , \( a + 1\) , \( 0\) , \( -a\bigr] \) |
| 171.1-a4 |
\(\Q(\sqrt{-3}) \)
|
171 |
171.1 |
171.1-a |
\( \bigl[1\) , \( -1\) , \( a + 1\) , \( 5 a + 5\) , \( -11 a + 11\bigr] \) |
| 171.2-a1 |
\(\Q(\sqrt{-3}) \)
|
171 |
171.2 |
171.2-a |
\( \bigl[1\) , \( -1\) , \( a\) , \( 4 a - 9\) , \( -10 a + 13\bigr] \) |
| 171.2-a2 |
\(\Q(\sqrt{-3}) \)
|
171 |
171.2 |
171.2-a |
\( \bigl[1\) , \( -1\) , \( a\) , \( 19 a + 6\) , \( -19 a + 67\bigr] \) |
| 171.2-a3 |
\(\Q(\sqrt{-3}) \)
|
171 |
171.2 |
171.2-a |
\( \bigl[1\) , \( -1\) , \( a\) , \( -a + 1\) , \( 0\bigr] \) |
| 171.2-a4 |
\(\Q(\sqrt{-3}) \)
|
171 |
171.2 |
171.2-a |
\( \bigl[1\) , \( -1\) , \( a\) , \( -6 a + 11\) , \( 10 a + 1\bigr] \) |
| 192.1-a1 |
\(\Q(\sqrt{-3}) \)
|
192 |
192.1 |
192.1-a |
\( \bigl[0\) , \( a\) , \( 0\) , \( 11 a - 6\) , \( 11 a - 1\bigr] \) |
| 192.1-a2 |
\(\Q(\sqrt{-3}) \)
|
192 |
192.1 |
192.1-a |
\( \bigl[0\) , \( a\) , \( 0\) , \( 6 a - 11\) , \( -11 a + 10\bigr] \) |
| 192.1-a3 |
\(\Q(\sqrt{-3}) \)
|
192 |
192.1 |
192.1-a |
\( \bigl[0\) , \( a\) , \( 0\) , \( 16 a - 16\) , \( -180\bigr] \) |