Learn more

Refine search


Results (1-50 of 94 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
37632.2-a1 37632.2-a \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.839682332$ $0.872431843$ 2.860688937 \( -\frac{10061824000}{352947} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -113\) , \( 516\bigr] \) ${y}^2={x}^{3}-{x}^{2}-113{x}+516$
37632.2-a2 37632.2-a \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.893121554$ $1.308647765$ 2.860688937 \( \frac{6058120000}{21609} a - \frac{296066000}{21609} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 15 a + 67\) , \( -285 a + 183\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(15a+67\right){x}-285a+183$
37632.2-a3 37632.2-a \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.679364664$ $0.436215921$ 2.860688937 \( \frac{38824340648000}{41523861603} a - \frac{18060359974000}{41523861603} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -185 a - 13\) , \( -1525 a + 1535\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-185a-13\right){x}-1525a+1535$
37632.2-a4 37632.2-a \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.679364664$ $0.436215921$ 2.860688937 \( -\frac{38824340648000}{41523861603} a + \frac{20763980674000}{41523861603} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 185 a - 198\) , \( 1525 a + 10\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(185a-198\right){x}+1525a+10$
37632.2-a5 37632.2-a \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.946560777$ $2.617295530$ 2.860688937 \( \frac{2048000}{1323} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 7\) , \( 0\bigr] \) ${y}^2={x}^{3}-{x}^{2}+7{x}$
37632.2-a6 37632.2-a \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.893121554$ $1.308647765$ 2.860688937 \( \frac{9826000}{5103} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -28\) , \( 28\bigr] \) ${y}^2={x}^{3}-{x}^{2}-28{x}+28$
37632.2-a7 37632.2-a \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.893121554$ $1.308647765$ 2.860688937 \( -\frac{6058120000}{21609} a + \frac{5762054000}{21609} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -15 a + 82\) , \( 285 a - 102\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-15a+82\right){x}+285a-102$
37632.2-a8 37632.2-a \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.679364664$ $0.436215921$ 2.860688937 \( \frac{2640279346000}{3087} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -1828\) , \( 30700\bigr] \) ${y}^2={x}^{3}-{x}^{2}-1828{x}+30700$
37632.2-b1 37632.2-b \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.200409440$ $3.062045138$ 2.834386847 \( \frac{64528}{21} a - \frac{133072}{21} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -a - 6\) , \( -5 a - 5\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-a-6\right){x}-5a-5$
37632.2-b2 37632.2-b \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.200409440$ $0.765511284$ 2.834386847 \( -\frac{540572762}{194481} a - \frac{785664898}{194481} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 19 a + 94\) , \( 567 a - 357\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(19a+94\right){x}+567a-357$
37632.2-b3 37632.2-b \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.400818881$ $1.531022569$ 2.834386847 \( -\frac{53428}{441} a - \frac{11008}{7} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -21 a + 14\) , \( 23 a - 45\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-21a+14\right){x}+23a-45$
37632.2-b4 37632.2-b \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.801637762$ $0.765511284$ 2.834386847 \( \frac{4146758318}{7203} a + \frac{35803706902}{7203} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -381 a + 254\) , \( 1271 a - 2613\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-381a+254\right){x}+1271a-2613$
37632.2-c1 37632.2-c \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.118704208$ 1.291768351 \( -\frac{2837874944}{3087} a - \frac{2609921648}{1029} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 64 a - 168\) , \( 492 a - 824\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(64a-168\right){x}+492a-824$
37632.2-c2 37632.2-c \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.279676052$ 1.291768351 \( -\frac{2501041836936508}{124571584809} a - \frac{179475886366954}{41523861603} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 1164 a - 888\) , \( -14220 a + 2448\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(1164a-888\right){x}-14220a+2448$
37632.2-c3 37632.2-c \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.559352104$ 1.291768351 \( \frac{18014530528}{9529569} a - \frac{4291022956}{9529569} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 84 a - 168\) , \( 324 a - 864\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(84a-168\right){x}+324a-864$
37632.2-c4 37632.2-c \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.279676052$ 1.291768351 \( -\frac{37641895204}{15752961} a + \frac{10103566538}{5250987} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -676 a + 552\) , \( 4116 a - 7056\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-676a+552\right){x}+4116a-7056$
37632.2-d1 37632.2-d \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.118704208$ 1.291768351 \( \frac{2837874944}{3087} a - \frac{10667639888}{3087} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 168 a - 64\) , \( -492 a - 332\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(168a-64\right){x}-492a-332$
37632.2-d2 37632.2-d \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.279676052$ 1.291768351 \( \frac{2501041836936508}{124571584809} a - \frac{3039469496037370}{124571584809} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 888 a - 1164\) , \( 14220 a - 11772\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(888a-1164\right){x}+14220a-11772$
37632.2-d3 37632.2-d \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.279676052$ 1.291768351 \( \frac{37641895204}{15752961} a - \frac{7331195590}{15752961} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -552 a + 676\) , \( -4116 a - 2940\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-552a+676\right){x}-4116a-2940$
37632.2-d4 37632.2-d \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.559352104$ 1.291768351 \( -\frac{18014530528}{9529569} a + \frac{4574502524}{3176523} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 168 a - 84\) , \( -324 a - 540\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(168a-84\right){x}-324a-540$
37632.2-e1 37632.2-e \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.200409440$ $0.765511284$ 2.834386847 \( \frac{540572762}{194481} a - \frac{147359740}{21609} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -19 a + 113\) , \( -567 a + 210\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-19a+113\right){x}-567a+210$
37632.2-e2 37632.2-e \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.200409440$ $3.062045138$ 2.834386847 \( -\frac{64528}{21} a - 3264 \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( a - 7\) , \( 5 a - 10\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(a-7\right){x}+5a-10$
37632.2-e3 37632.2-e \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.400818881$ $1.531022569$ 2.834386847 \( \frac{53428}{441} a - \frac{746932}{441} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 21 a - 7\) , \( -23 a - 22\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(21a-7\right){x}-23a-22$
37632.2-e4 37632.2-e \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.801637762$ $0.765511284$ 2.834386847 \( -\frac{4146758318}{7203} a + \frac{13316821740}{2401} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 381 a - 127\) , \( -1271 a - 1342\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(381a-127\right){x}-1271a-1342$
37632.2-f1 37632.2-f \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.492598417$ $0.107759616$ 2.971586411 \( \frac{1866593950165482334}{99698791708803} a - \frac{1072967896631695607}{99698791708803} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 7520 a - 2384\) , \( 119424 a + 121984\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(7520a-2384\right){x}+119424a+121984$
37632.2-f2 37632.2-f \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $0.746299208$ $0.215519232$ 2.971586411 \( -\frac{4354703137}{17294403} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -544\) , \( 13888\bigr] \) ${y}^2={x}^{3}-{x}^{2}-544{x}+13888$
37632.2-f3 37632.2-f \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.373149604$ $1.724153859$ 2.971586411 \( \frac{103823}{63} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 16\) , \( 0\bigr] \) ${y}^2={x}^{3}-{x}^{2}+16{x}$
37632.2-f4 37632.2-f \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.746299208$ $0.862076929$ 2.971586411 \( \frac{7189057}{3969} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -64\) , \( 64\bigr] \) ${y}^2={x}^{3}-{x}^{2}-64{x}+64$
37632.2-f5 37632.2-f \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.492598417$ $0.107759616$ 2.971586411 \( -\frac{1866593950165482334}{99698791708803} a + \frac{793626053533786727}{99698791708803} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -7520 a + 5136\) , \( -119424 a + 241408\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-7520a+5136\right){x}-119424a+241408$
37632.2-f6 37632.2-f \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.492598417$ $0.431038464$ 2.971586411 \( \frac{6570725617}{45927} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -624\) , \( -5760\bigr] \) ${y}^2={x}^{3}-{x}^{2}-624{x}-5760$
37632.2-f7 37632.2-f \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1.492598417$ $0.431038464$ 2.971586411 \( \frac{13027640977}{21609} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -784\) , \( 8704\bigr] \) ${y}^2={x}^{3}-{x}^{2}-784{x}+8704$
37632.2-f8 37632.2-f \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $2.985196834$ $0.215519232$ 2.971586411 \( \frac{53297461115137}{147} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -12544\) , \( 544960\bigr] \) ${y}^2={x}^{3}-{x}^{2}-12544{x}+544960$
37632.2-g1 37632.2-g \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $0.688154321$ $0.986178417$ 3.134517471 \( \frac{11696828}{7203} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 48\) , \( -48\bigr] \) ${y}^2={x}^{3}-{x}^{2}+48{x}-48$
37632.2-g2 37632.2-g \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.344077160$ $1.972356834$ 3.134517471 \( \frac{810448}{441} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -12\) , \( 0\bigr] \) ${y}^2={x}^{3}-{x}^{2}-12{x}$
37632.2-g3 37632.2-g \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.376308643$ $0.493089208$ 3.134517471 \( \frac{4089054504964}{17294403} a + \frac{1248500351158}{17294403} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 80 a + 488\) , \( 5312 a - 3760\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(80a+488\right){x}+5312a-3760$
37632.2-g4 37632.2-g \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.688154321$ $3.944713669$ 3.134517471 \( \frac{2725888}{21} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -7\) , \( 10\bigr] \) ${y}^2={x}^{3}-{x}^{2}-7{x}+10$
37632.2-g5 37632.2-g \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.376308643$ $0.493089208$ 3.134517471 \( -\frac{4089054504964}{17294403} a + \frac{5337554856122}{17294403} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -80 a + 568\) , \( -5312 a + 1552\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-80a+568\right){x}-5312a+1552$
37632.2-g6 37632.2-g \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.688154321$ $0.986178417$ 3.134517471 \( \frac{381775972}{567} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -152\) , \( -672\bigr] \) ${y}^2={x}^{3}-{x}^{2}-152{x}-672$
37632.2-h1 37632.2-h \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.390851865$ 2.409026097 \( -\frac{2725888}{64827} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -7\) , \( -52\bigr] \) ${y}^2={x}^{3}+{x}^{2}-7{x}-52$
37632.2-h2 37632.2-h \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.347712966$ 2.409026097 \( \frac{6522128932}{3720087} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -392\) , \( 228\bigr] \) ${y}^2={x}^{3}+{x}^{2}-392{x}+228$
37632.2-h3 37632.2-h \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.695425932$ 2.409026097 \( \frac{1412375961568}{51883209} a + \frac{124759690576}{51883209} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 195 a - 37\) , \( -243 a - 727\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(195a-37\right){x}-243a-727$
37632.2-h4 37632.2-h \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.695425932$ 2.409026097 \( -\frac{1412375961568}{51883209} a + \frac{1537135652144}{51883209} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -195 a + 158\) , \( 243 a - 970\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-195a+158\right){x}+243a-970$
37632.2-h5 37632.2-h \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.695425932$ 2.409026097 \( \frac{6940769488}{35721} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -252\) , \( -1620\bigr] \) ${y}^2={x}^{3}+{x}^{2}-252{x}-1620$
37632.2-h6 37632.2-h \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.347712966$ 2.409026097 \( \frac{7080974546692}{189} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -4032\) , \( -99900\bigr] \) ${y}^2={x}^{3}+{x}^{2}-4032{x}-99900$
37632.2-i1 37632.2-i \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.256090708$ $1.118704208$ 3.969718467 \( \frac{2837874944}{3087} a - \frac{10667639888}{3087} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -64 a - 104\) , \( 492 a + 332\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-64a-104\right){x}+492a+332$
37632.2-i2 37632.2-i \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.256090708$ $0.279676052$ 3.969718467 \( \frac{2501041836936508}{124571584809} a - \frac{3039469496037370}{124571584809} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -1164 a + 276\) , \( -14220 a + 11772\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-1164a+276\right){x}-14220a+11772$
37632.2-i3 37632.2-i \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.064022677$ $0.279676052$ 3.969718467 \( \frac{37641895204}{15752961} a - \frac{7331195590}{15752961} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 676 a - 124\) , \( 4116 a + 2940\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(676a-124\right){x}+4116a+2940$
37632.2-i4 37632.2-i \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.128045354$ $0.559352104$ 3.969718467 \( -\frac{18014530528}{9529569} a + \frac{4574502524}{3176523} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -84 a - 84\) , \( 324 a + 540\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-84a-84\right){x}+324a+540$
37632.2-j1 37632.2-j \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.854787973$ $0.503648480$ 3.976905641 \( \frac{17414119304}{321489} a - \frac{2892652228}{107163} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 299 a + 122\) , \( -1431 a + 3309\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(299a+122\right){x}-1431a+3309$
37632.2-j2 37632.2-j \(\Q(\sqrt{-3}) \) \( 2^{8} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $0.427393986$ $1.007296960$ 3.976905641 \( \frac{21006592}{194481} a - \frac{10511344}{194481} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 19 a - 18\) , \( -115 a + 145\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(19a-18\right){x}-115a+145$
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.