Properties

Label 2.0.3.1-196.2-a5
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 196 \)
CM no
Base change no
Q-curve yes
Torsion order \( 6 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([1, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(184a-415\right){x}+1880a-2686\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([1,1]),K([0,-1]),K([1,0]),K([-415,184]),K([-2686,1880])])
 
Copy content gp:E = ellinit([Polrev([1,1]),Polrev([0,-1]),Polrev([1,0]),Polrev([-415,184]),Polrev([-2686,1880])], K);
 
Copy content magma:E := EllipticCurve([K![1,1],K![0,-1],K![1,0],K![-415,184],K![-2686,1880]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z/{6}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(10 a - 18 : 6 a + 52 : 1\right)$$0$$6$

Invariants

Conductor: $\frak{N}$ = \((14)\) = \((2)\cdot(-3a+1)\cdot(3a-2)\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 196 \) = \(4\cdot7\cdot7\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(K, ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-529723810a+594579328$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-529723810a+594579328)\) = \((2)\cdot(-3a+1)^{18}\cdot(3a-2)^{2}\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 319169065190448004 \) = \(4\cdot7^{18}\cdot7^{2}\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( -\frac{14378731676028886375}{3256827195820898} a + \frac{34112602872034890375}{3256827195820898} \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 0 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(0\)
Regulator: $\mathrm{Reg}(E/K)$ = \( 1 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ = \( 1 \)
Global period: $\Omega(E/K)$ \( 0.875417135194005395499284989624523134200 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 36 \)  =  \(1\cdot( 2 \cdot 3^{2} )\cdot2\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(6\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 0.50542231865747002580453570622359978637 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$$\begin{aligned}0.505422319 \approx L(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 0.875417 \cdot 1 \cdot 36 } { {6^2 \cdot 1.732051} } \\ & \approx 0.505422319 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is semistable. There are 3 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((2)\) \(4\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((-3a+1)\) \(7\) \(18\) \(I_{18}\) Split multiplicative \(-1\) \(1\) \(18\) \(18\)
\((3a-2)\) \(7\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 6, 9 and 18.
Its isogeny class 196.2-a consists of curves linked by isogenies of degrees dividing 18.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.