Learn more

Refine search


Results (10 matches)

  Download displayed columns to          
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
196.2-a1 196.2-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $0.875417135$ 0.505422318 \( -\frac{548347731625}{1835008} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -171\) , \( -874\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-171{x}-874$
196.2-a2 196.2-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $7.878754216$ 0.505422318 \( -\frac{15625}{28} \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -a\) , \( 0\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}-a{x}$
196.2-a3 196.2-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7^{2} \) 0 $\Z/3\Z\oplus\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $2.626251405$ 0.505422318 \( \frac{9938375}{21952} \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( 4 a - 5\) , \( -6\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(4a-5\right){x}-6$
196.2-a4 196.2-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7^{2} \) 0 $\Z/3\Z\oplus\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $1.313125702$ 0.505422318 \( \frac{4956477625}{941192} \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -36 a + 35\) , \( -70\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-36a+35\right){x}-70$
196.2-a5 196.2-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $0.437708567$ 0.505422318 \( -\frac{14378731676028886375}{3256827195820898} a + \frac{34112602872034890375}{3256827195820898} \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( 184 a - 415\) , \( 1880 a - 2686\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(184a-415\right){x}+1880a-2686$
196.2-a6 196.2-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $0.437708567$ 0.505422318 \( \frac{14378731676028886375}{3256827195820898} a + \frac{9866935598003002000}{1628413597910449} \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( 414 a - 185\) , \( -1880 a - 806\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(414a-185\right){x}-1880a-806$
196.2-a7 196.2-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $3.939377108$ 0.505422318 \( \frac{128787625}{98} \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -11 a + 10\) , \( 12\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-11a+10\right){x}+12$
196.2-a8 196.2-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $0.875417135$ 0.505422318 \( -\frac{10722436976428375}{161414428} a + \frac{3017980745593000}{40353607} \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( 184 a - 405\) , \( 1920 a - 2854\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(184a-405\right){x}+1920a-2854$
196.2-a9 196.2-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $0.875417135$ 0.505422318 \( \frac{10722436976428375}{161414428} a + \frac{1349486005943625}{161414428} \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( 404 a - 185\) , \( -1920 a - 934\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(404a-185\right){x}-1920a-934$
196.2-a10 196.2-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 7^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $0.437708567$ 0.505422318 \( \frac{2251439055699625}{25088} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -2731\) , \( -55146\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-2731{x}-55146$
  Download displayed columns to          

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.