Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
196.2-a1 |
196.2-a |
$10$ |
$18$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
196.2 |
\( 2^{2} \cdot 7^{2} \) |
\( 2^{36} \cdot 7^{2} \) |
$0.57911$ |
$(-3a+1), (3a-2), (2)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.1[2] |
$1$ |
\( 2 \cdot 3^{2} \) |
$1$ |
$0.875417135$ |
0.505422318 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -171\) , \( -874\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-171{x}-874$ |
196.2-a2 |
196.2-a |
$10$ |
$18$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
196.2 |
\( 2^{2} \cdot 7^{2} \) |
\( 2^{4} \cdot 7^{2} \) |
$0.57911$ |
$(-3a+1), (3a-2), (2)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.1[2] |
$1$ |
\( 2 \) |
$1$ |
$7.878754216$ |
0.505422318 |
\( -\frac{15625}{28} \) |
\( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -a\) , \( 0\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}-a{x}$ |
196.2-a3 |
196.2-a |
$10$ |
$18$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
196.2 |
\( 2^{2} \cdot 7^{2} \) |
\( 2^{12} \cdot 7^{6} \) |
$0.57911$ |
$(-3a+1), (3a-2), (2)$ |
0 |
$\Z/3\Z\oplus\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3Cs.1.1[2] |
$1$ |
\( 2 \cdot 3^{3} \) |
$1$ |
$2.626251405$ |
0.505422318 |
\( \frac{9938375}{21952} \) |
\( \bigl[a + 1\) , \( -a\) , \( 1\) , \( 4 a - 5\) , \( -6\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(4a-5\right){x}-6$ |
196.2-a4 |
196.2-a |
$10$ |
$18$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
196.2 |
\( 2^{2} \cdot 7^{2} \) |
\( 2^{6} \cdot 7^{12} \) |
$0.57911$ |
$(-3a+1), (3a-2), (2)$ |
0 |
$\Z/3\Z\oplus\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3Cs.1.1[2] |
$1$ |
\( 2^{2} \cdot 3^{3} \) |
$1$ |
$1.313125702$ |
0.505422318 |
\( \frac{4956477625}{941192} \) |
\( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -36 a + 35\) , \( -70\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-36a+35\right){x}-70$ |
196.2-a5 |
196.2-a |
$10$ |
$18$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
196.2 |
\( 2^{2} \cdot 7^{2} \) |
\( 2^{2} \cdot 7^{20} \) |
$0.57911$ |
$(-3a+1), (3a-2), (2)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.1[2] |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$1$ |
$0.437708567$ |
0.505422318 |
\( -\frac{14378731676028886375}{3256827195820898} a + \frac{34112602872034890375}{3256827195820898} \) |
\( \bigl[a + 1\) , \( -a\) , \( 1\) , \( 184 a - 415\) , \( 1880 a - 2686\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(184a-415\right){x}+1880a-2686$ |
196.2-a6 |
196.2-a |
$10$ |
$18$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
196.2 |
\( 2^{2} \cdot 7^{2} \) |
\( 2^{2} \cdot 7^{20} \) |
$0.57911$ |
$(-3a+1), (3a-2), (2)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.1[2] |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$1$ |
$0.437708567$ |
0.505422318 |
\( \frac{14378731676028886375}{3256827195820898} a + \frac{9866935598003002000}{1628413597910449} \) |
\( \bigl[a + 1\) , \( -a\) , \( 1\) , \( 414 a - 185\) , \( -1880 a - 806\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(414a-185\right){x}-1880a-806$ |
196.2-a7 |
196.2-a |
$10$ |
$18$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
196.2 |
\( 2^{2} \cdot 7^{2} \) |
\( 2^{2} \cdot 7^{4} \) |
$0.57911$ |
$(-3a+1), (3a-2), (2)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.1[2] |
$1$ |
\( 2^{2} \) |
$1$ |
$3.939377108$ |
0.505422318 |
\( \frac{128787625}{98} \) |
\( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -11 a + 10\) , \( 12\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-11a+10\right){x}+12$ |
196.2-a8 |
196.2-a |
$10$ |
$18$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
196.2 |
\( 2^{2} \cdot 7^{2} \) |
\( 2^{4} \cdot 7^{10} \) |
$0.57911$ |
$(-3a+1), (3a-2), (2)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.1[2] |
$1$ |
\( 2 \cdot 3^{2} \) |
$1$ |
$0.875417135$ |
0.505422318 |
\( -\frac{10722436976428375}{161414428} a + \frac{3017980745593000}{40353607} \) |
\( \bigl[a + 1\) , \( -a\) , \( 1\) , \( 184 a - 405\) , \( 1920 a - 2854\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(184a-405\right){x}+1920a-2854$ |
196.2-a9 |
196.2-a |
$10$ |
$18$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
196.2 |
\( 2^{2} \cdot 7^{2} \) |
\( 2^{4} \cdot 7^{10} \) |
$0.57911$ |
$(-3a+1), (3a-2), (2)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.1[2] |
$1$ |
\( 2 \cdot 3^{2} \) |
$1$ |
$0.875417135$ |
0.505422318 |
\( \frac{10722436976428375}{161414428} a + \frac{1349486005943625}{161414428} \) |
\( \bigl[a + 1\) , \( -a\) , \( 1\) , \( 404 a - 185\) , \( -1920 a - 934\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(404a-185\right){x}-1920a-934$ |
196.2-a10 |
196.2-a |
$10$ |
$18$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
196.2 |
\( 2^{2} \cdot 7^{2} \) |
\( 2^{18} \cdot 7^{4} \) |
$0.57911$ |
$(-3a+1), (3a-2), (2)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.1[2] |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$1$ |
$0.437708567$ |
0.505422318 |
\( \frac{2251439055699625}{25088} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -2731\) , \( -55146\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-2731{x}-55146$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.