Properties

Label 9984.gk
Modulus $9984$
Conductor $3328$
Order $64$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9984, base_ring=CyclotomicField(64)) M = H._module chi = DirichletCharacter(H, M([32,47,0,48])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(499,9984)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(9984\)
Conductor: \(3328\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(64\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 3328.dc
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{64})$
Fixed field: Number field defined by a degree 64 polynomial

First 31 of 32 characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(35\)
\(\chi_{9984}(499,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{64}\right)\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{11}{64}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{9}{64}\right)\) \(e\left(\frac{9}{32}\right)\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{21}{64}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{37}{64}\right)\)
\(\chi_{9984}(619,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{64}\right)\) \(e\left(\frac{9}{32}\right)\) \(e\left(\frac{33}{64}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{27}{64}\right)\) \(e\left(\frac{27}{32}\right)\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{63}{64}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{47}{64}\right)\)
\(\chi_{9984}(1123,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{64}\right)\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{39}{64}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{61}{64}\right)\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{57}{64}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{9}{64}\right)\)
\(\chi_{9984}(1243,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{64}\right)\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{29}{64}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{47}{64}\right)\) \(e\left(\frac{15}{32}\right)\) \(e\left(\frac{9}{32}\right)\) \(e\left(\frac{3}{64}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{51}{64}\right)\)
\(\chi_{9984}(1747,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{64}\right)\) \(e\left(\frac{27}{32}\right)\) \(e\left(\frac{3}{64}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{49}{64}\right)\) \(e\left(\frac{17}{32}\right)\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{29}{64}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{45}{64}\right)\)
\(\chi_{9984}(1867,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{64}\right)\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{25}{64}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{3}{64}\right)\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{7}{64}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{55}{64}\right)\)
\(\chi_{9984}(2371,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{64}\right)\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{31}{64}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{37}{64}\right)\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{1}{64}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{17}{64}\right)\)
\(\chi_{9984}(2491,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{64}\right)\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{21}{64}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{23}{64}\right)\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{11}{64}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{59}{64}\right)\)
\(\chi_{9984}(2995,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{64}\right)\) \(e\left(\frac{19}{32}\right)\) \(e\left(\frac{59}{64}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{25}{64}\right)\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{15}{32}\right)\) \(e\left(\frac{37}{64}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{53}{64}\right)\)
\(\chi_{9984}(3115,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{64}\right)\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{17}{64}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{43}{64}\right)\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{13}{32}\right)\) \(e\left(\frac{15}{64}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{63}{64}\right)\)
\(\chi_{9984}(3619,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{64}\right)\) \(e\left(\frac{15}{32}\right)\) \(e\left(\frac{23}{64}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{13}{64}\right)\) \(e\left(\frac{13}{32}\right)\) \(e\left(\frac{27}{32}\right)\) \(e\left(\frac{9}{64}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{25}{64}\right)\)
\(\chi_{9984}(3739,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{64}\right)\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{13}{64}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{63}{64}\right)\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{19}{64}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{3}{64}\right)\)
\(\chi_{9984}(4243,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{64}\right)\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{51}{64}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{1}{64}\right)\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{45}{64}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{61}{64}\right)\)
\(\chi_{9984}(4363,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{64}\right)\) \(e\left(\frac{17}{32}\right)\) \(e\left(\frac{9}{64}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{19}{64}\right)\) \(e\left(\frac{19}{32}\right)\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{23}{64}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{7}{64}\right)\)
\(\chi_{9984}(4867,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{64}\right)\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{15}{64}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{53}{64}\right)\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{19}{32}\right)\) \(e\left(\frac{17}{64}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{33}{64}\right)\)
\(\chi_{9984}(4987,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{64}\right)\) \(e\left(\frac{13}{32}\right)\) \(e\left(\frac{5}{64}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{39}{64}\right)\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{17}{32}\right)\) \(e\left(\frac{27}{64}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{11}{64}\right)\)
\(\chi_{9984}(5491,\cdot)\) \(1\) \(1\) \(e\left(\frac{63}{64}\right)\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{43}{64}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{41}{64}\right)\) \(e\left(\frac{9}{32}\right)\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{53}{64}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{5}{64}\right)\)
\(\chi_{9984}(5611,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{64}\right)\) \(e\left(\frac{9}{32}\right)\) \(e\left(\frac{1}{64}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{59}{64}\right)\) \(e\left(\frac{27}{32}\right)\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{31}{64}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{15}{64}\right)\)
\(\chi_{9984}(6115,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{64}\right)\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{7}{64}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{29}{64}\right)\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{25}{64}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{41}{64}\right)\)
\(\chi_{9984}(6235,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{64}\right)\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{61}{64}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{15}{64}\right)\) \(e\left(\frac{15}{32}\right)\) \(e\left(\frac{9}{32}\right)\) \(e\left(\frac{35}{64}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{19}{64}\right)\)
\(\chi_{9984}(6739,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{64}\right)\) \(e\left(\frac{27}{32}\right)\) \(e\left(\frac{35}{64}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{17}{64}\right)\) \(e\left(\frac{17}{32}\right)\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{61}{64}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{13}{64}\right)\)
\(\chi_{9984}(6859,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{64}\right)\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{57}{64}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{35}{64}\right)\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{39}{64}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{23}{64}\right)\)
\(\chi_{9984}(7363,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{64}\right)\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{63}{64}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{5}{64}\right)\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{33}{64}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{49}{64}\right)\)
\(\chi_{9984}(7483,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{64}\right)\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{53}{64}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{55}{64}\right)\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{43}{64}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{27}{64}\right)\)
\(\chi_{9984}(7987,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{64}\right)\) \(e\left(\frac{19}{32}\right)\) \(e\left(\frac{27}{64}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{57}{64}\right)\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{15}{32}\right)\) \(e\left(\frac{5}{64}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{21}{64}\right)\)
\(\chi_{9984}(8107,\cdot)\) \(1\) \(1\) \(e\left(\frac{45}{64}\right)\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{49}{64}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{11}{64}\right)\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{13}{32}\right)\) \(e\left(\frac{47}{64}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{31}{64}\right)\)
\(\chi_{9984}(8611,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{64}\right)\) \(e\left(\frac{15}{32}\right)\) \(e\left(\frac{55}{64}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{45}{64}\right)\) \(e\left(\frac{13}{32}\right)\) \(e\left(\frac{27}{32}\right)\) \(e\left(\frac{41}{64}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{57}{64}\right)\)
\(\chi_{9984}(8731,\cdot)\) \(1\) \(1\) \(e\left(\frac{57}{64}\right)\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{45}{64}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{31}{64}\right)\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{51}{64}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{35}{64}\right)\)
\(\chi_{9984}(9235,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{64}\right)\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{19}{64}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{33}{64}\right)\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{13}{64}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{29}{64}\right)\)
\(\chi_{9984}(9355,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{64}\right)\) \(e\left(\frac{17}{32}\right)\) \(e\left(\frac{41}{64}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{51}{64}\right)\) \(e\left(\frac{19}{32}\right)\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{55}{64}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{39}{64}\right)\)
\(\chi_{9984}(9859,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{64}\right)\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{47}{64}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{21}{64}\right)\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{19}{32}\right)\) \(e\left(\frac{49}{64}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{64}\right)\)