Properties

Label 9984.7483
Modulus $9984$
Conductor $3328$
Order $64$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9984, base_ring=CyclotomicField(64)) M = H._module chi = DirichletCharacter(H, M([32,17,0,16]))
 
Copy content pari:[g,chi] = znchar(Mod(7483,9984))
 

Basic properties

Modulus: \(9984\)
Conductor: \(3328\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(64\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{3328}(827,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 9984.gk

\(\chi_{9984}(499,\cdot)\) \(\chi_{9984}(619,\cdot)\) \(\chi_{9984}(1123,\cdot)\) \(\chi_{9984}(1243,\cdot)\) \(\chi_{9984}(1747,\cdot)\) \(\chi_{9984}(1867,\cdot)\) \(\chi_{9984}(2371,\cdot)\) \(\chi_{9984}(2491,\cdot)\) \(\chi_{9984}(2995,\cdot)\) \(\chi_{9984}(3115,\cdot)\) \(\chi_{9984}(3619,\cdot)\) \(\chi_{9984}(3739,\cdot)\) \(\chi_{9984}(4243,\cdot)\) \(\chi_{9984}(4363,\cdot)\) \(\chi_{9984}(4867,\cdot)\) \(\chi_{9984}(4987,\cdot)\) \(\chi_{9984}(5491,\cdot)\) \(\chi_{9984}(5611,\cdot)\) \(\chi_{9984}(6115,\cdot)\) \(\chi_{9984}(6235,\cdot)\) \(\chi_{9984}(6739,\cdot)\) \(\chi_{9984}(6859,\cdot)\) \(\chi_{9984}(7363,\cdot)\) \(\chi_{9984}(7483,\cdot)\) \(\chi_{9984}(7987,\cdot)\) \(\chi_{9984}(8107,\cdot)\) \(\chi_{9984}(8611,\cdot)\) \(\chi_{9984}(8731,\cdot)\) \(\chi_{9984}(9235,\cdot)\) \(\chi_{9984}(9355,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{64})$
Fixed field: Number field defined by a degree 64 polynomial

Values on generators

\((8191,3589,3329,769)\) → \((-1,e\left(\frac{17}{64}\right),1,i)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 9984 }(7483, a) \) \(1\)\(1\)\(e\left(\frac{33}{64}\right)\)\(e\left(\frac{29}{32}\right)\)\(e\left(\frac{53}{64}\right)\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{55}{64}\right)\)\(e\left(\frac{23}{32}\right)\)\(e\left(\frac{1}{32}\right)\)\(e\left(\frac{43}{64}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{27}{64}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 9984 }(7483,a) \;\) at \(\;a = \) e.g. 2