sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9984, base_ring=CyclotomicField(192))
M = H._module
chi = DirichletCharacter(H, M([96,189,96,128]))
pari:[g,chi] = znchar(Mod(4403,9984))
| Modulus: | \(9984\) | |
| Conductor: | \(9984\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(192\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{9984}(35,\cdot)\)
\(\chi_{9984}(107,\cdot)\)
\(\chi_{9984}(347,\cdot)\)
\(\chi_{9984}(419,\cdot)\)
\(\chi_{9984}(659,\cdot)\)
\(\chi_{9984}(731,\cdot)\)
\(\chi_{9984}(971,\cdot)\)
\(\chi_{9984}(1043,\cdot)\)
\(\chi_{9984}(1283,\cdot)\)
\(\chi_{9984}(1355,\cdot)\)
\(\chi_{9984}(1595,\cdot)\)
\(\chi_{9984}(1667,\cdot)\)
\(\chi_{9984}(1907,\cdot)\)
\(\chi_{9984}(1979,\cdot)\)
\(\chi_{9984}(2219,\cdot)\)
\(\chi_{9984}(2291,\cdot)\)
\(\chi_{9984}(2531,\cdot)\)
\(\chi_{9984}(2603,\cdot)\)
\(\chi_{9984}(2843,\cdot)\)
\(\chi_{9984}(2915,\cdot)\)
\(\chi_{9984}(3155,\cdot)\)
\(\chi_{9984}(3227,\cdot)\)
\(\chi_{9984}(3467,\cdot)\)
\(\chi_{9984}(3539,\cdot)\)
\(\chi_{9984}(3779,\cdot)\)
\(\chi_{9984}(3851,\cdot)\)
\(\chi_{9984}(4091,\cdot)\)
\(\chi_{9984}(4163,\cdot)\)
\(\chi_{9984}(4403,\cdot)\)
\(\chi_{9984}(4475,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((8191,3589,3329,769)\) → \((-1,e\left(\frac{63}{64}\right),-1,e\left(\frac{2}{3}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
| \( \chi_{ 9984 }(4403, a) \) |
\(1\) | \(1\) | \(e\left(\frac{31}{64}\right)\) | \(e\left(\frac{65}{96}\right)\) | \(e\left(\frac{65}{192}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{91}{192}\right)\) | \(e\left(\frac{43}{96}\right)\) | \(e\left(\frac{31}{32}\right)\) | \(e\left(\frac{47}{192}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{31}{192}\right)\) |
sage:chi.jacobi_sum(n)