Properties

Label 9984.419
Modulus $9984$
Conductor $9984$
Order $192$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9984, base_ring=CyclotomicField(192)) M = H._module chi = DirichletCharacter(H, M([96,129,96,64]))
 
Copy content pari:[g,chi] = znchar(Mod(419,9984))
 

Basic properties

Modulus: \(9984\)
Conductor: \(9984\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(192\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 9984.hp

\(\chi_{9984}(35,\cdot)\) \(\chi_{9984}(107,\cdot)\) \(\chi_{9984}(347,\cdot)\) \(\chi_{9984}(419,\cdot)\) \(\chi_{9984}(659,\cdot)\) \(\chi_{9984}(731,\cdot)\) \(\chi_{9984}(971,\cdot)\) \(\chi_{9984}(1043,\cdot)\) \(\chi_{9984}(1283,\cdot)\) \(\chi_{9984}(1355,\cdot)\) \(\chi_{9984}(1595,\cdot)\) \(\chi_{9984}(1667,\cdot)\) \(\chi_{9984}(1907,\cdot)\) \(\chi_{9984}(1979,\cdot)\) \(\chi_{9984}(2219,\cdot)\) \(\chi_{9984}(2291,\cdot)\) \(\chi_{9984}(2531,\cdot)\) \(\chi_{9984}(2603,\cdot)\) \(\chi_{9984}(2843,\cdot)\) \(\chi_{9984}(2915,\cdot)\) \(\chi_{9984}(3155,\cdot)\) \(\chi_{9984}(3227,\cdot)\) \(\chi_{9984}(3467,\cdot)\) \(\chi_{9984}(3539,\cdot)\) \(\chi_{9984}(3779,\cdot)\) \(\chi_{9984}(3851,\cdot)\) \(\chi_{9984}(4091,\cdot)\) \(\chi_{9984}(4163,\cdot)\) \(\chi_{9984}(4403,\cdot)\) \(\chi_{9984}(4475,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{192})$
Fixed field: Number field defined by a degree 192 polynomial (not computed)

Values on generators

\((8191,3589,3329,769)\) → \((-1,e\left(\frac{43}{64}\right),-1,e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 9984 }(419, a) \) \(1\)\(1\)\(e\left(\frac{11}{64}\right)\)\(e\left(\frac{85}{96}\right)\)\(e\left(\frac{85}{192}\right)\)\(e\left(\frac{47}{48}\right)\)\(e\left(\frac{119}{192}\right)\)\(e\left(\frac{71}{96}\right)\)\(e\left(\frac{11}{32}\right)\)\(e\left(\frac{91}{192}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{11}{192}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 9984 }(419,a) \;\) at \(\;a = \) e.g. 2