Properties

Label 9900.29
Modulus $9900$
Conductor $2475$
Order $30$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9900, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([0,5,3,21]))
 
Copy content pari:[g,chi] = znchar(Mod(29,9900))
 

Basic properties

Modulus: \(9900\)
Conductor: \(2475\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(30\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2475}(29,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 9900.kn

\(\chi_{9900}(29,\cdot)\) \(\chi_{9900}(569,\cdot)\) \(\chi_{9900}(1289,\cdot)\) \(\chi_{9900}(4109,\cdot)\) \(\chi_{9900}(6629,\cdot)\) \(\chi_{9900}(7169,\cdot)\) \(\chi_{9900}(7409,\cdot)\) \(\chi_{9900}(7889,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: 30.30.17200029144406711299460730183653019214710733642693885059316016850061714649200439453125.1

Values on generators

\((4951,5501,2377,4501)\) → \((1,e\left(\frac{1}{6}\right),e\left(\frac{1}{10}\right),e\left(\frac{7}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 9900 }(29, a) \) \(1\)\(1\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 9900 }(29,a) \;\) at \(\;a = \) e.g. 2