sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2475, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([5,3,21]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(29,2475))
         
     
    
  
   | Modulus: |  \(2475\) |   |  
   | Conductor: |  \(2475\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(30\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  even |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{2475}(29,\cdot)\)
  \(\chi_{2475}(464,\cdot)\)
  \(\chi_{2475}(569,\cdot)\)
  \(\chi_{2475}(1289,\cdot)\)
  \(\chi_{2475}(1634,\cdot)\)
  \(\chi_{2475}(1679,\cdot)\)
  \(\chi_{2475}(2219,\cdot)\)
  \(\chi_{2475}(2459,\cdot)\)
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((551,2377,2026)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{1}{10}\right),e\left(\frac{7}{10}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) | \(23\) |       
    
    
      | \( \chi_{ 2475 }(29, a) \) | 
      \(1\) | \(1\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{14}{15}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)