Properties

Label 9800.fy
Modulus $9800$
Conductor $1960$
Order $84$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9800, base_ring=CyclotomicField(84)) M = H._module chi = DirichletCharacter(H, M([0,42,21,26])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(157,9800)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(9800\)
Conductor: \(1960\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(84\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 1960.dm
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{84})$
Fixed field: Number field defined by a degree 84 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(9\) \(11\) \(13\) \(17\) \(19\) \(23\) \(27\) \(29\) \(31\)
\(\chi_{9800}(157,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{9800}(493,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{9800}(957,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{9800}(1557,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{9800}(2357,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{9800}(2693,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{9800}(2957,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{9800}(3293,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{9800}(3757,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{9800}(4093,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{9800}(4357,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{9800}(4693,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{9800}(5157,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{9800}(5493,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{9800}(5757,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{9800}(6093,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{9800}(6557,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{9800}(6893,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{9800}(7157,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{9800}(7493,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{9800}(8293,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{9800}(8893,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{9800}(9357,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{9800}(9693,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{5}{6}\right)\)