sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9800, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([0,42,63,74]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(8893,9800))
         
     
    
  \(\chi_{9800}(157,\cdot)\)
  \(\chi_{9800}(493,\cdot)\)
  \(\chi_{9800}(957,\cdot)\)
  \(\chi_{9800}(1557,\cdot)\)
  \(\chi_{9800}(2357,\cdot)\)
  \(\chi_{9800}(2693,\cdot)\)
  \(\chi_{9800}(2957,\cdot)\)
  \(\chi_{9800}(3293,\cdot)\)
  \(\chi_{9800}(3757,\cdot)\)
  \(\chi_{9800}(4093,\cdot)\)
  \(\chi_{9800}(4357,\cdot)\)
  \(\chi_{9800}(4693,\cdot)\)
  \(\chi_{9800}(5157,\cdot)\)
  \(\chi_{9800}(5493,\cdot)\)
  \(\chi_{9800}(5757,\cdot)\)
  \(\chi_{9800}(6093,\cdot)\)
  \(\chi_{9800}(6557,\cdot)\)
  \(\chi_{9800}(6893,\cdot)\)
  \(\chi_{9800}(7157,\cdot)\)
  \(\chi_{9800}(7493,\cdot)\)
  \(\chi_{9800}(8293,\cdot)\)
  \(\chi_{9800}(8893,\cdot)\)
  \(\chi_{9800}(9357,\cdot)\)
  \(\chi_{9800}(9693,\cdot)\)
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((7351,4901,1177,5001)\) → \((1,-1,-i,e\left(\frac{37}{42}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) |       
    
    
      | \( \chi_{ 9800 }(8893, a) \) | 
      \(1\) | \(1\) | \(e\left(\frac{53}{84}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{23}{28}\right)\) | \(e\left(\frac{65}{84}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{61}{84}\right)\) | \(e\left(\frac{25}{28}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{1}{6}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)