Properties

Label 9800.7993
Modulus $9800$
Conductor $245$
Order $28$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9800, base_ring=CyclotomicField(28)) M = H._module chi = DirichletCharacter(H, M([0,0,21,18]))
 
Copy content pari:[g,chi] = znchar(Mod(7993,9800))
 

Basic properties

Modulus: \(9800\)
Conductor: \(245\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(28\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{245}(153,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 9800.dp

\(\chi_{9800}(657,\cdot)\) \(\chi_{9800}(993,\cdot)\) \(\chi_{9800}(2393,\cdot)\) \(\chi_{9800}(3457,\cdot)\) \(\chi_{9800}(3793,\cdot)\) \(\chi_{9800}(4857,\cdot)\) \(\chi_{9800}(6257,\cdot)\) \(\chi_{9800}(6593,\cdot)\) \(\chi_{9800}(7657,\cdot)\) \(\chi_{9800}(7993,\cdot)\) \(\chi_{9800}(9057,\cdot)\) \(\chi_{9800}(9393,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{28})\)
Fixed field: Number field defined by a degree 28 polynomial

Values on generators

\((7351,4901,1177,5001)\) → \((1,1,-i,e\left(\frac{9}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 9800 }(7993, a) \) \(1\)\(1\)\(e\left(\frac{25}{28}\right)\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{13}{28}\right)\)\(e\left(\frac{23}{28}\right)\)\(1\)\(e\left(\frac{19}{28}\right)\)\(e\left(\frac{19}{28}\right)\)\(e\left(\frac{1}{14}\right)\)\(-1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 9800 }(7993,a) \;\) at \(\;a = \) e.g. 2