sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(980, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([21,21,22]))
pari:[g,chi] = znchar(Mod(879,980))
Modulus: | \(980\) | |
Conductor: | \(980\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(42\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{980}(39,\cdot)\)
\(\chi_{980}(179,\cdot)\)
\(\chi_{980}(219,\cdot)\)
\(\chi_{980}(319,\cdot)\)
\(\chi_{980}(359,\cdot)\)
\(\chi_{980}(499,\cdot)\)
\(\chi_{980}(599,\cdot)\)
\(\chi_{980}(639,\cdot)\)
\(\chi_{980}(739,\cdot)\)
\(\chi_{980}(779,\cdot)\)
\(\chi_{980}(879,\cdot)\)
\(\chi_{980}(919,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((491,197,101)\) → \((-1,-1,e\left(\frac{11}{21}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) |
\( \chi_{ 980 }(879, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{1}{6}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)