sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(980, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([21,0,4]))
pari:[g,chi] = znchar(Mod(571,980))
\(\chi_{980}(11,\cdot)\)
\(\chi_{980}(51,\cdot)\)
\(\chi_{980}(151,\cdot)\)
\(\chi_{980}(191,\cdot)\)
\(\chi_{980}(291,\cdot)\)
\(\chi_{980}(331,\cdot)\)
\(\chi_{980}(431,\cdot)\)
\(\chi_{980}(571,\cdot)\)
\(\chi_{980}(611,\cdot)\)
\(\chi_{980}(711,\cdot)\)
\(\chi_{980}(751,\cdot)\)
\(\chi_{980}(891,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((491,197,101)\) → \((-1,1,e\left(\frac{2}{21}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) |
\( \chi_{ 980 }(571, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{1}{6}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)