sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(980, base_ring=CyclotomicField(28))
M = H._module
chi = DirichletCharacter(H, M([0,7,24]))
pari:[g,chi] = znchar(Mod(57,980))
\(\chi_{980}(57,\cdot)\)
\(\chi_{980}(113,\cdot)\)
\(\chi_{980}(253,\cdot)\)
\(\chi_{980}(337,\cdot)\)
\(\chi_{980}(477,\cdot)\)
\(\chi_{980}(533,\cdot)\)
\(\chi_{980}(617,\cdot)\)
\(\chi_{980}(673,\cdot)\)
\(\chi_{980}(757,\cdot)\)
\(\chi_{980}(813,\cdot)\)
\(\chi_{980}(897,\cdot)\)
\(\chi_{980}(953,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((491,197,101)\) → \((1,i,e\left(\frac{6}{7}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) |
\( \chi_{ 980 }(57, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{17}{28}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{1}{28}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(-1\) | \(e\left(\frac{9}{28}\right)\) | \(e\left(\frac{23}{28}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(1\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)