Properties

Label 97020.151
Modulus $97020$
Conductor $19404$
Order $210$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(97020, base_ring=CyclotomicField(210)) M = H._module chi = DirichletCharacter(H, M([105,140,0,50,63]))
 
Copy content pari:[g,chi] = znchar(Mod(151,97020))
 

Basic properties

Modulus: \(97020\)
Conductor: \(19404\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(210\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{19404}(151,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 97020.bhj

\(\chi_{97020}(151,\cdot)\) \(\chi_{97020}(8971,\cdot)\) \(\chi_{97020}(10831,\cdot)\) \(\chi_{97020}(11491,\cdot)\) \(\chi_{97020}(12091,\cdot)\) \(\chi_{97020}(12751,\cdot)\) \(\chi_{97020}(13351,\cdot)\) \(\chi_{97020}(14011,\cdot)\) \(\chi_{97020}(22171,\cdot)\) \(\chi_{97020}(22831,\cdot)\) \(\chi_{97020}(24691,\cdot)\) \(\chi_{97020}(26611,\cdot)\) \(\chi_{97020}(27211,\cdot)\) \(\chi_{97020}(27871,\cdot)\) \(\chi_{97020}(36031,\cdot)\) \(\chi_{97020}(36691,\cdot)\) \(\chi_{97020}(38551,\cdot)\) \(\chi_{97020}(39211,\cdot)\) \(\chi_{97020}(39811,\cdot)\) \(\chi_{97020}(40471,\cdot)\) \(\chi_{97020}(41071,\cdot)\) \(\chi_{97020}(41731,\cdot)\) \(\chi_{97020}(49891,\cdot)\) \(\chi_{97020}(50551,\cdot)\) \(\chi_{97020}(53071,\cdot)\) \(\chi_{97020}(53671,\cdot)\) \(\chi_{97020}(54331,\cdot)\) \(\chi_{97020}(54931,\cdot)\) \(\chi_{97020}(55591,\cdot)\) \(\chi_{97020}(63751,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{105})$
Fixed field: Number field defined by a degree 210 polynomial (not computed)

Values on generators

\((48511,43121,77617,9901,44101)\) → \((-1,e\left(\frac{2}{3}\right),1,e\left(\frac{5}{21}\right),e\left(\frac{3}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)\(47\)
\( \chi_{ 97020 }(151, a) \) \(1\)\(1\)\(e\left(\frac{103}{210}\right)\)\(e\left(\frac{137}{210}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{37}{42}\right)\)\(e\left(\frac{11}{210}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{23}{105}\right)\)\(e\left(\frac{169}{210}\right)\)\(e\left(\frac{2}{21}\right)\)\(e\left(\frac{53}{70}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 97020 }(151,a) \;\) at \(\;a = \) e.g. 2