Properties

Label 19404.151
Modulus $19404$
Conductor $19404$
Order $210$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(19404, base_ring=CyclotomicField(210)) M = H._module chi = DirichletCharacter(H, M([105,140,50,63]))
 
Copy content pari:[g,chi] = znchar(Mod(151,19404))
 

Basic properties

Modulus: \(19404\)
Conductor: \(19404\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(210\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 19404.kx

\(\chi_{19404}(151,\cdot)\) \(\chi_{19404}(403,\cdot)\) \(\chi_{19404}(1003,\cdot)\) \(\chi_{19404}(1663,\cdot)\) \(\chi_{19404}(2263,\cdot)\) \(\chi_{19404}(2515,\cdot)\) \(\chi_{19404}(2767,\cdot)\) \(\chi_{19404}(2923,\cdot)\) \(\chi_{19404}(3175,\cdot)\) \(\chi_{19404}(3427,\cdot)\) \(\chi_{19404}(3775,\cdot)\) \(\chi_{19404}(4435,\cdot)\) \(\chi_{19404}(5035,\cdot)\) \(\chi_{19404}(5287,\cdot)\) \(\chi_{19404}(5539,\cdot)\) \(\chi_{19404}(5695,\cdot)\) \(\chi_{19404}(6199,\cdot)\) \(\chi_{19404}(7207,\cdot)\) \(\chi_{19404}(7807,\cdot)\) \(\chi_{19404}(8059,\cdot)\) \(\chi_{19404}(8467,\cdot)\) \(\chi_{19404}(8719,\cdot)\) \(\chi_{19404}(8971,\cdot)\) \(\chi_{19404}(9319,\cdot)\) \(\chi_{19404}(9979,\cdot)\) \(\chi_{19404}(10579,\cdot)\) \(\chi_{19404}(10831,\cdot)\) \(\chi_{19404}(11083,\cdot)\) \(\chi_{19404}(11491,\cdot)\) \(\chi_{19404}(11743,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{105})$
Fixed field: Number field defined by a degree 210 polynomial (not computed)

Values on generators

\((9703,4313,9901,5293)\) → \((-1,e\left(\frac{2}{3}\right),e\left(\frac{5}{21}\right),e\left(\frac{3}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 19404 }(151, a) \) \(1\)\(1\)\(e\left(\frac{46}{105}\right)\)\(e\left(\frac{103}{210}\right)\)\(e\left(\frac{137}{210}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{37}{42}\right)\)\(e\left(\frac{92}{105}\right)\)\(e\left(\frac{11}{210}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{23}{105}\right)\)\(e\left(\frac{169}{210}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 19404 }(151,a) \;\) at \(\;a = \) e.g. 2