sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(19404, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([105,140,50,63]))
pari:[g,chi] = znchar(Mod(151,19404))
| Modulus: | \(19404\) | |
| Conductor: | \(19404\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(210\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{19404}(151,\cdot)\)
\(\chi_{19404}(403,\cdot)\)
\(\chi_{19404}(1003,\cdot)\)
\(\chi_{19404}(1663,\cdot)\)
\(\chi_{19404}(2263,\cdot)\)
\(\chi_{19404}(2515,\cdot)\)
\(\chi_{19404}(2767,\cdot)\)
\(\chi_{19404}(2923,\cdot)\)
\(\chi_{19404}(3175,\cdot)\)
\(\chi_{19404}(3427,\cdot)\)
\(\chi_{19404}(3775,\cdot)\)
\(\chi_{19404}(4435,\cdot)\)
\(\chi_{19404}(5035,\cdot)\)
\(\chi_{19404}(5287,\cdot)\)
\(\chi_{19404}(5539,\cdot)\)
\(\chi_{19404}(5695,\cdot)\)
\(\chi_{19404}(6199,\cdot)\)
\(\chi_{19404}(7207,\cdot)\)
\(\chi_{19404}(7807,\cdot)\)
\(\chi_{19404}(8059,\cdot)\)
\(\chi_{19404}(8467,\cdot)\)
\(\chi_{19404}(8719,\cdot)\)
\(\chi_{19404}(8971,\cdot)\)
\(\chi_{19404}(9319,\cdot)\)
\(\chi_{19404}(9979,\cdot)\)
\(\chi_{19404}(10579,\cdot)\)
\(\chi_{19404}(10831,\cdot)\)
\(\chi_{19404}(11083,\cdot)\)
\(\chi_{19404}(11491,\cdot)\)
\(\chi_{19404}(11743,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((9703,4313,9901,5293)\) → \((-1,e\left(\frac{2}{3}\right),e\left(\frac{5}{21}\right),e\left(\frac{3}{10}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 19404 }(151, a) \) |
\(1\) | \(1\) | \(e\left(\frac{46}{105}\right)\) | \(e\left(\frac{103}{210}\right)\) | \(e\left(\frac{137}{210}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{92}{105}\right)\) | \(e\left(\frac{11}{210}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{23}{105}\right)\) | \(e\left(\frac{169}{210}\right)\) |
sage:chi.jacobi_sum(n)