Properties

Label 9576.47
Modulus $9576$
Conductor $4788$
Order $18$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9576, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([9,0,3,15,8]))
 
Copy content pari:[g,chi] = znchar(Mod(47,9576))
 

Basic properties

Modulus: \(9576\)
Conductor: \(4788\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(18\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4788}(47,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 9576.un

\(\chi_{9576}(47,\cdot)\) \(\chi_{9576}(815,\cdot)\) \(\chi_{9576}(4583,\cdot)\) \(\chi_{9576}(6599,\cdot)\) \(\chi_{9576}(7871,\cdot)\) \(\chi_{9576}(9383,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: 18.0.2737423648827503221881241041869077795330320399335424.2

Values on generators

\((7183,4789,5321,4105,1009)\) → \((-1,1,e\left(\frac{1}{6}\right),e\left(\frac{5}{6}\right),e\left(\frac{4}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 9576 }(47, a) \) \(-1\)\(1\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{9}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 9576 }(47,a) \;\) at \(\;a = \) e.g. 2