Properties

Modulus $9576$
Structure \(C_{2}\times C_{2}\times C_{6}\times C_{6}\times C_{18}\)
Order $2592$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(9576)
 
pari: g = idealstar(,9576,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 2592
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{2}\times C_{6}\times C_{6}\times C_{18}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{9576}(7183,\cdot)$, $\chi_{9576}(4789,\cdot)$, $\chi_{9576}(5321,\cdot)$, $\chi_{9576}(4105,\cdot)$, $\chi_{9576}(1009,\cdot)$

First 32 of 2592 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(5\) \(11\) \(13\) \(17\) \(23\) \(25\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{9576}(1,\cdot)\) 9576.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{9576}(5,\cdot)\) 9576.vz 18 yes \(1\) \(1\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{9576}(11,\cdot)\) 9576.ib 6 yes \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(-1\)
\(\chi_{9576}(13,\cdot)\) 9576.ys 18 yes \(1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{7}{9}\right)\)
\(\chi_{9576}(17,\cdot)\) 9576.wy 18 no \(1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{9576}(23,\cdot)\) 9576.bbs 18 no \(1\) \(1\) \(e\left(\frac{11}{18}\right)\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{9576}(25,\cdot)\) 9576.rh 9 no \(1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{9576}(29,\cdot)\) 9576.bav 18 no \(1\) \(1\) \(e\left(\frac{4}{9}\right)\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(-1\) \(1\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{9576}(31,\cdot)\) 9576.jp 6 no \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\)
\(\chi_{9576}(37,\cdot)\) 9576.nt 6 no \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\)
\(\chi_{9576}(41,\cdot)\) 9576.tf 18 no \(-1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(-1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(1\) \(-1\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{9576}(43,\cdot)\) 9576.vg 18 no \(-1\) \(1\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{8}{9}\right)\)
\(\chi_{9576}(47,\cdot)\) 9576.un 18 no \(-1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{9576}(53,\cdot)\) 9576.bbm 18 no \(1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{9576}(55,\cdot)\) 9576.ym 18 no \(1\) \(1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{9576}(59,\cdot)\) 9576.zc 18 yes \(1\) \(1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{9576}(61,\cdot)\) 9576.zk 18 yes \(-1\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{9576}(65,\cdot)\) 9576.jx 6 no \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\)
\(\chi_{9576}(67,\cdot)\) 9576.wm 18 yes \(1\) \(1\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{9576}(71,\cdot)\) 9576.uc 18 no \(-1\) \(1\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{5}{9}\right)\)
\(\chi_{9576}(73,\cdot)\) 9576.tr 18 no \(-1\) \(1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{9576}(79,\cdot)\) 9576.bah 18 no \(1\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{9576}(83,\cdot)\) 9576.nu 6 yes \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{9576}(85,\cdot)\) 9576.xn 18 no \(1\) \(1\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{9576}(89,\cdot)\) 9576.bam 18 no \(-1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{9576}(97,\cdot)\) 9576.uf 18 no \(1\) \(1\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{5}{9}\right)\)
\(\chi_{9576}(101,\cdot)\) 9576.vz 18 yes \(1\) \(1\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{9576}(103,\cdot)\) 9576.dt 6 no \(-1\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{9576}(107,\cdot)\) 9576.ql 6 no \(-1\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{9576}(109,\cdot)\) 9576.wz 18 no \(-1\) \(1\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{9576}(113,\cdot)\) 9576.nf 6 no \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{9576}(115,\cdot)\) 9576.fu 6 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\)
Click here to search among the remaining 2560 characters.