sage: H = DirichletGroup(9576)
pari: g = idealstar(,9576,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 2592 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{6}\times C_{6}\times C_{18}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{9576}(7183,\cdot)$, $\chi_{9576}(4789,\cdot)$, $\chi_{9576}(5321,\cdot)$, $\chi_{9576}(4105,\cdot)$, $\chi_{9576}(1009,\cdot)$ |
First 32 of 2592 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{9576}(1,\cdot)\) | 9576.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{9576}(5,\cdot)\) | 9576.vz | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{9}\right)\) |
\(\chi_{9576}(11,\cdot)\) | 9576.ib | 6 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) |
\(\chi_{9576}(13,\cdot)\) | 9576.ys | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{7}{9}\right)\) |
\(\chi_{9576}(17,\cdot)\) | 9576.wy | 18 | no | \(1\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{9}\right)\) |
\(\chi_{9576}(23,\cdot)\) | 9576.bbs | 18 | no | \(1\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{18}\right)\) |
\(\chi_{9576}(25,\cdot)\) | 9576.rh | 9 | no | \(1\) | \(1\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{4}{9}\right)\) |
\(\chi_{9576}(29,\cdot)\) | 9576.bav | 18 | no | \(1\) | \(1\) | \(e\left(\frac{4}{9}\right)\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{9}\right)\) |
\(\chi_{9576}(31,\cdot)\) | 9576.jp | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) |
\(\chi_{9576}(37,\cdot)\) | 9576.nt | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) |
\(\chi_{9576}(41,\cdot)\) | 9576.tf | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(-1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(1\) | \(-1\) | \(e\left(\frac{1}{18}\right)\) |
\(\chi_{9576}(43,\cdot)\) | 9576.vg | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{8}{9}\right)\) |
\(\chi_{9576}(47,\cdot)\) | 9576.un | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{9}\right)\) |
\(\chi_{9576}(53,\cdot)\) | 9576.bbm | 18 | no | \(1\) | \(1\) | \(e\left(\frac{1}{9}\right)\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{4}{9}\right)\) |
\(\chi_{9576}(55,\cdot)\) | 9576.ym | 18 | no | \(1\) | \(1\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{13}{18}\right)\) |
\(\chi_{9576}(59,\cdot)\) | 9576.zc | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{18}\right)\) |
\(\chi_{9576}(61,\cdot)\) | 9576.zk | 18 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{18}\right)\) |
\(\chi_{9576}(65,\cdot)\) | 9576.jx | 6 | no | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) |
\(\chi_{9576}(67,\cdot)\) | 9576.wm | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{17}{18}\right)\) |
\(\chi_{9576}(71,\cdot)\) | 9576.uc | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{9}\right)\) |
\(\chi_{9576}(73,\cdot)\) | 9576.tr | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{18}\right)\) |
\(\chi_{9576}(79,\cdot)\) | 9576.bah | 18 | no | \(1\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{13}{18}\right)\) |
\(\chi_{9576}(83,\cdot)\) | 9576.nu | 6 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{9576}(85,\cdot)\) | 9576.xn | 18 | no | \(1\) | \(1\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{4}{9}\right)\) |
\(\chi_{9576}(89,\cdot)\) | 9576.bam | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{18}\right)\) |
\(\chi_{9576}(97,\cdot)\) | 9576.uf | 18 | no | \(1\) | \(1\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{9}\right)\) |
\(\chi_{9576}(101,\cdot)\) | 9576.vz | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{4}{9}\right)\) |
\(\chi_{9576}(103,\cdot)\) | 9576.dt | 6 | no | \(-1\) | \(1\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{9576}(107,\cdot)\) | 9576.ql | 6 | no | \(-1\) | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{9576}(109,\cdot)\) | 9576.wz | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{18}\right)\) |
\(\chi_{9576}(113,\cdot)\) | 9576.nf | 6 | no | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{9576}(115,\cdot)\) | 9576.fu | 6 | no | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) |