Properties

Label 939.be
Modulus $939$
Conductor $313$
Order $312$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(939, base_ring=CyclotomicField(312)) M = H._module chi = DirichletCharacter(H, M([0,1])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(10,939)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(939\)
Conductor: \(313\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(312\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 313.p
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{312})$
Fixed field: Number field defined by a degree 312 polynomial (not computed)

First 31 of 96 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(13\) \(14\) \(16\)
\(\chi_{939}(10,\cdot)\) \(-1\) \(1\) \(e\left(\frac{137}{156}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{41}{104}\right)\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{1}{312}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{107}{156}\right)\) \(e\left(\frac{85}{312}\right)\) \(e\left(\frac{20}{39}\right)\)
\(\chi_{939}(28,\cdot)\) \(-1\) \(1\) \(e\left(\frac{43}{156}\right)\) \(e\left(\frac{43}{78}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{55}{104}\right)\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{47}{312}\right)\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{37}{156}\right)\) \(e\left(\frac{251}{312}\right)\) \(e\left(\frac{4}{39}\right)\)
\(\chi_{939}(31,\cdot)\) \(-1\) \(1\) \(e\left(\frac{47}{156}\right)\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{19}{104}\right)\) \(e\left(\frac{47}{52}\right)\) \(e\left(\frac{211}{312}\right)\) \(e\left(\frac{7}{78}\right)\) \(e\left(\frac{113}{156}\right)\) \(e\left(\frac{151}{312}\right)\) \(e\left(\frac{8}{39}\right)\)
\(\chi_{939}(34,\cdot)\) \(-1\) \(1\) \(e\left(\frac{103}{156}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{87}{104}\right)\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{167}{312}\right)\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{85}{156}\right)\) \(e\left(\frac{155}{312}\right)\) \(e\left(\frac{25}{39}\right)\)
\(\chi_{939}(37,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{156}\right)\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{27}{104}\right)\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{163}{312}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{125}{156}\right)\) \(e\left(\frac{127}{312}\right)\) \(e\left(\frac{23}{39}\right)\)
\(\chi_{939}(46,\cdot)\) \(-1\) \(1\) \(e\left(\frac{53}{156}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{69}{104}\right)\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{301}{312}\right)\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{71}{156}\right)\) \(e\left(\frac{1}{312}\right)\) \(e\left(\frac{14}{39}\right)\)
\(\chi_{939}(55,\cdot)\) \(-1\) \(1\) \(e\left(\frac{35}{156}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{75}{104}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{187}{312}\right)\) \(e\left(\frac{55}{78}\right)\) \(e\left(\frac{41}{156}\right)\) \(e\left(\frac{295}{312}\right)\) \(e\left(\frac{35}{39}\right)\)
\(\chi_{939}(67,\cdot)\) \(-1\) \(1\) \(e\left(\frac{55}{156}\right)\) \(e\left(\frac{55}{78}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{103}{104}\right)\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{71}{312}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{109}{156}\right)\) \(e\left(\frac{107}{312}\right)\) \(e\left(\frac{16}{39}\right)\)
\(\chi_{939}(91,\cdot)\) \(-1\) \(1\) \(e\left(\frac{149}{156}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{89}{104}\right)\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{25}{312}\right)\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{23}{156}\right)\) \(e\left(\frac{253}{312}\right)\) \(e\left(\frac{32}{39}\right)\)
\(\chi_{939}(94,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{156}\right)\) \(e\left(\frac{19}{78}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{63}{104}\right)\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{311}{312}\right)\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{49}{156}\right)\) \(e\left(\frac{227}{312}\right)\) \(e\left(\frac{19}{39}\right)\)
\(\chi_{939}(106,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{156}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{31}{104}\right)\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{295}{312}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{53}{156}\right)\) \(e\left(\frac{115}{312}\right)\) \(e\left(\frac{11}{39}\right)\)
\(\chi_{939}(109,\cdot)\) \(-1\) \(1\) \(e\left(\frac{73}{156}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{45}{104}\right)\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{29}{312}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{139}{156}\right)\) \(e\left(\frac{281}{312}\right)\) \(e\left(\frac{34}{39}\right)\)
\(\chi_{939}(112,\cdot)\) \(-1\) \(1\) \(e\left(\frac{83}{156}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{59}{104}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{283}{312}\right)\) \(e\left(\frac{19}{78}\right)\) \(e\left(\frac{17}{156}\right)\) \(e\left(\frac{31}{312}\right)\) \(e\left(\frac{5}{39}\right)\)
\(\chi_{939}(127,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{156}\right)\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{81}{104}\right)\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{73}{312}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{11}{156}\right)\) \(e\left(\frac{277}{312}\right)\) \(e\left(\frac{17}{39}\right)\)
\(\chi_{939}(130,\cdot)\) \(-1\) \(1\) \(e\left(\frac{127}{156}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{79}{104}\right)\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{215}{312}\right)\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{73}{156}\right)\) \(e\left(\frac{179}{312}\right)\) \(e\left(\frac{10}{39}\right)\)
\(\chi_{939}(154,\cdot)\) \(-1\) \(1\) \(e\left(\frac{97}{156}\right)\) \(e\left(\frac{19}{78}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{89}{104}\right)\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{233}{312}\right)\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{127}{156}\right)\) \(e\left(\frac{149}{312}\right)\) \(e\left(\frac{19}{39}\right)\)
\(\chi_{939}(160,\cdot)\) \(-1\) \(1\) \(e\left(\frac{61}{156}\right)\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{49}{104}\right)\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{161}{312}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{67}{156}\right)\) \(e\left(\frac{269}{312}\right)\) \(e\left(\frac{22}{39}\right)\)
\(\chi_{939}(187,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{156}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{17}{104}\right)\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{41}{312}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{19}{156}\right)\) \(e\left(\frac{53}{312}\right)\) \(e\left(\frac{1}{39}\right)\)
\(\chi_{939}(190,\cdot)\) \(-1\) \(1\) \(e\left(\frac{113}{156}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{101}{104}\right)\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{109}{312}\right)\) \(e\left(\frac{55}{78}\right)\) \(e\left(\frac{119}{156}\right)\) \(e\left(\frac{217}{312}\right)\) \(e\left(\frac{35}{39}\right)\)
\(\chi_{939}(193,\cdot)\) \(-1\) \(1\) \(e\left(\frac{49}{156}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{1}{104}\right)\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{137}{312}\right)\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{151}{156}\right)\) \(e\left(\frac{101}{312}\right)\) \(e\left(\frac{10}{39}\right)\)
\(\chi_{939}(211,\cdot)\) \(-1\) \(1\) \(e\left(\frac{131}{156}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{43}{104}\right)\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{67}{312}\right)\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{149}{156}\right)\) \(e\left(\frac{79}{312}\right)\) \(e\left(\frac{14}{39}\right)\)
\(\chi_{939}(223,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{156}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{5}{104}\right)\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{269}{312}\right)\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{79}{156}\right)\) \(e\left(\frac{89}{312}\right)\) \(e\left(\frac{37}{39}\right)\)
\(\chi_{939}(229,\cdot)\) \(-1\) \(1\) \(e\left(\frac{71}{156}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{11}{104}\right)\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{259}{312}\right)\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{101}{156}\right)\) \(e\left(\frac{175}{312}\right)\) \(e\left(\frac{32}{39}\right)\)
\(\chi_{939}(244,\cdot)\) \(-1\) \(1\) \(e\left(\frac{139}{156}\right)\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{23}{104}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{239}{312}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{145}{156}\right)\) \(e\left(\frac{35}{312}\right)\) \(e\left(\frac{22}{39}\right)\)
\(\chi_{939}(250,\cdot)\) \(-1\) \(1\) \(e\left(\frac{59}{156}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{15}{104}\right)\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{79}{312}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{29}{156}\right)\) \(e\left(\frac{163}{312}\right)\) \(e\left(\frac{20}{39}\right)\)
\(\chi_{939}(253,\cdot)\) \(-1\) \(1\) \(e\left(\frac{107}{156}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{103}{104}\right)\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{175}{312}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{5}{156}\right)\) \(e\left(\frac{211}{312}\right)\) \(e\left(\frac{29}{39}\right)\)
\(\chi_{939}(268,\cdot)\) \(-1\) \(1\) \(e\left(\frac{95}{156}\right)\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{3}{104}\right)\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{307}{312}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{89}{156}\right)\) \(e\left(\frac{199}{312}\right)\) \(e\left(\frac{17}{39}\right)\)
\(\chi_{939}(292,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{156}\right)\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{104}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{23}{312}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{121}{156}\right)\) \(e\left(\frac{83}{312}\right)\) \(e\left(\frac{31}{39}\right)\)
\(\chi_{939}(298,\cdot)\) \(-1\) \(1\) \(e\left(\frac{67}{156}\right)\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{99}{104}\right)\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{251}{312}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{25}{156}\right)\) \(e\left(\frac{119}{312}\right)\) \(e\left(\frac{28}{39}\right)\)
\(\chi_{939}(328,\cdot)\) \(-1\) \(1\) \(e\left(\frac{67}{156}\right)\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{47}{104}\right)\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{95}{312}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{25}{156}\right)\) \(e\left(\frac{275}{312}\right)\) \(e\left(\frac{28}{39}\right)\)
\(\chi_{939}(334,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{156}\right)\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{59}{104}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{179}{312}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{121}{156}\right)\) \(e\left(\frac{239}{312}\right)\) \(e\left(\frac{31}{39}\right)\)