Properties

Label 939.160
Modulus $939$
Conductor $313$
Order $312$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(939, base_ring=CyclotomicField(312)) M = H._module chi = DirichletCharacter(H, M([0,161]))
 
Copy content pari:[g,chi] = znchar(Mod(160,939))
 

Basic properties

Modulus: \(939\)
Conductor: \(313\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(312\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{313}(160,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 939.be

\(\chi_{939}(10,\cdot)\) \(\chi_{939}(28,\cdot)\) \(\chi_{939}(31,\cdot)\) \(\chi_{939}(34,\cdot)\) \(\chi_{939}(37,\cdot)\) \(\chi_{939}(46,\cdot)\) \(\chi_{939}(55,\cdot)\) \(\chi_{939}(67,\cdot)\) \(\chi_{939}(91,\cdot)\) \(\chi_{939}(94,\cdot)\) \(\chi_{939}(106,\cdot)\) \(\chi_{939}(109,\cdot)\) \(\chi_{939}(112,\cdot)\) \(\chi_{939}(127,\cdot)\) \(\chi_{939}(130,\cdot)\) \(\chi_{939}(154,\cdot)\) \(\chi_{939}(160,\cdot)\) \(\chi_{939}(187,\cdot)\) \(\chi_{939}(190,\cdot)\) \(\chi_{939}(193,\cdot)\) \(\chi_{939}(211,\cdot)\) \(\chi_{939}(223,\cdot)\) \(\chi_{939}(229,\cdot)\) \(\chi_{939}(244,\cdot)\) \(\chi_{939}(250,\cdot)\) \(\chi_{939}(253,\cdot)\) \(\chi_{939}(268,\cdot)\) \(\chi_{939}(292,\cdot)\) \(\chi_{939}(298,\cdot)\) \(\chi_{939}(328,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{312})$
Fixed field: Number field defined by a degree 312 polynomial (not computed)

Values on generators

\((314,10)\) → \((1,e\left(\frac{161}{312}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 939 }(160, a) \) \(-1\)\(1\)\(e\left(\frac{61}{156}\right)\)\(e\left(\frac{61}{78}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{49}{104}\right)\)\(e\left(\frac{9}{52}\right)\)\(e\left(\frac{161}{312}\right)\)\(e\left(\frac{29}{78}\right)\)\(e\left(\frac{67}{156}\right)\)\(e\left(\frac{269}{312}\right)\)\(e\left(\frac{22}{39}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 939 }(160,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 939 }(160,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 939 }(160,·),\chi_{ 939 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 939 }(160,·)) \;\) at \(\; a,b = \) e.g. 1,2