Properties

Label 9386.dc
Modulus $9386$
Conductor $4693$
Order $228$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9386, base_ring=CyclotomicField(228)) M = H._module chi = DirichletCharacter(H, M([133,110])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(141,9386)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(9386\)
Conductor: \(4693\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(228\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 4693.dc
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{228})$
Fixed field: Number field defined by a degree 228 polynomial (not computed)

First 31 of 72 characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(15\) \(17\) \(21\) \(23\) \(25\)
\(\chi_{9386}(141,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{38}\right)\) \(e\left(\frac{41}{228}\right)\) \(e\left(\frac{179}{228}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{67}{228}\right)\) \(e\left(\frac{131}{228}\right)\) \(e\left(\frac{23}{114}\right)\) \(e\left(\frac{41}{228}\right)\) \(e\left(\frac{31}{114}\right)\) \(e\left(\frac{41}{114}\right)\)
\(\chi_{9386}(449,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{38}\right)\) \(e\left(\frac{109}{228}\right)\) \(e\left(\frac{31}{228}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{167}{228}\right)\) \(e\left(\frac{187}{228}\right)\) \(e\left(\frac{25}{114}\right)\) \(e\left(\frac{109}{228}\right)\) \(e\left(\frac{113}{114}\right)\) \(e\left(\frac{109}{114}\right)\)
\(\chi_{9386}(483,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{38}\right)\) \(e\left(\frac{191}{228}\right)\) \(e\left(\frac{161}{228}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{73}{228}\right)\) \(e\left(\frac{221}{228}\right)\) \(e\left(\frac{71}{114}\right)\) \(e\left(\frac{191}{228}\right)\) \(e\left(\frac{61}{114}\right)\) \(e\left(\frac{77}{114}\right)\)
\(\chi_{9386}(487,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{38}\right)\) \(e\left(\frac{175}{228}\right)\) \(e\left(\frac{169}{228}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{197}{228}\right)\) \(e\left(\frac{181}{228}\right)\) \(e\left(\frac{37}{114}\right)\) \(e\left(\frac{175}{228}\right)\) \(e\left(\frac{35}{114}\right)\) \(e\left(\frac{61}{114}\right)\)
\(\chi_{9386}(635,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{38}\right)\) \(e\left(\frac{17}{228}\right)\) \(e\left(\frac{191}{228}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{139}{228}\right)\) \(e\left(\frac{71}{228}\right)\) \(e\left(\frac{29}{114}\right)\) \(e\left(\frac{17}{228}\right)\) \(e\left(\frac{49}{114}\right)\) \(e\left(\frac{17}{114}\right)\)
\(\chi_{9386}(943,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{38}\right)\) \(e\left(\frac{169}{228}\right)\) \(e\left(\frac{115}{228}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{215}{228}\right)\) \(e\left(\frac{223}{228}\right)\) \(e\left(\frac{67}{114}\right)\) \(e\left(\frac{169}{228}\right)\) \(e\left(\frac{11}{114}\right)\) \(e\left(\frac{55}{114}\right)\)
\(\chi_{9386}(977,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{38}\right)\) \(e\left(\frac{167}{228}\right)\) \(e\left(\frac{173}{228}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{145}{228}\right)\) \(e\left(\frac{161}{228}\right)\) \(e\left(\frac{77}{114}\right)\) \(e\left(\frac{167}{228}\right)\) \(e\left(\frac{79}{114}\right)\) \(e\left(\frac{53}{114}\right)\)
\(\chi_{9386}(981,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{38}\right)\) \(e\left(\frac{7}{228}\right)\) \(e\left(\frac{25}{228}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{17}{228}\right)\) \(e\left(\frac{217}{228}\right)\) \(e\left(\frac{79}{114}\right)\) \(e\left(\frac{7}{228}\right)\) \(e\left(\frac{47}{114}\right)\) \(e\left(\frac{7}{114}\right)\)
\(\chi_{9386}(1129,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{38}\right)\) \(e\left(\frac{221}{228}\right)\) \(e\left(\frac{203}{228}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{211}{228}\right)\) \(e\left(\frac{11}{228}\right)\) \(e\left(\frac{35}{114}\right)\) \(e\left(\frac{221}{228}\right)\) \(e\left(\frac{67}{114}\right)\) \(e\left(\frac{107}{114}\right)\)
\(\chi_{9386}(1437,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{38}\right)\) \(e\left(\frac{1}{228}\right)\) \(e\left(\frac{199}{228}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{35}{228}\right)\) \(e\left(\frac{31}{228}\right)\) \(e\left(\frac{109}{114}\right)\) \(e\left(\frac{1}{228}\right)\) \(e\left(\frac{23}{114}\right)\) \(e\left(\frac{1}{114}\right)\)
\(\chi_{9386}(1471,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{38}\right)\) \(e\left(\frac{143}{228}\right)\) \(e\left(\frac{185}{228}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{217}{228}\right)\) \(e\left(\frac{101}{228}\right)\) \(e\left(\frac{83}{114}\right)\) \(e\left(\frac{143}{228}\right)\) \(e\left(\frac{97}{114}\right)\) \(e\left(\frac{29}{114}\right)\)
\(\chi_{9386}(1475,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{38}\right)\) \(e\left(\frac{67}{228}\right)\) \(e\left(\frac{109}{228}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{65}{228}\right)\) \(e\left(\frac{25}{228}\right)\) \(e\left(\frac{7}{114}\right)\) \(e\left(\frac{67}{228}\right)\) \(e\left(\frac{59}{114}\right)\) \(e\left(\frac{67}{114}\right)\)
\(\chi_{9386}(1623,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{38}\right)\) \(e\left(\frac{197}{228}\right)\) \(e\left(\frac{215}{228}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{55}{228}\right)\) \(e\left(\frac{179}{228}\right)\) \(e\left(\frac{41}{114}\right)\) \(e\left(\frac{197}{228}\right)\) \(e\left(\frac{85}{114}\right)\) \(e\left(\frac{83}{114}\right)\)
\(\chi_{9386}(1931,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{38}\right)\) \(e\left(\frac{61}{228}\right)\) \(e\left(\frac{55}{228}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{83}{228}\right)\) \(e\left(\frac{67}{228}\right)\) \(e\left(\frac{37}{114}\right)\) \(e\left(\frac{61}{228}\right)\) \(e\left(\frac{35}{114}\right)\) \(e\left(\frac{61}{114}\right)\)
\(\chi_{9386}(1965,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{38}\right)\) \(e\left(\frac{119}{228}\right)\) \(e\left(\frac{197}{228}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{61}{228}\right)\) \(e\left(\frac{41}{228}\right)\) \(e\left(\frac{89}{114}\right)\) \(e\left(\frac{119}{228}\right)\) \(e\left(\frac{1}{114}\right)\) \(e\left(\frac{5}{114}\right)\)
\(\chi_{9386}(1969,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{38}\right)\) \(e\left(\frac{127}{228}\right)\) \(e\left(\frac{193}{228}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{113}{228}\right)\) \(e\left(\frac{61}{228}\right)\) \(e\left(\frac{49}{114}\right)\) \(e\left(\frac{127}{228}\right)\) \(e\left(\frac{71}{114}\right)\) \(e\left(\frac{13}{114}\right)\)
\(\chi_{9386}(2117,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{38}\right)\) \(e\left(\frac{173}{228}\right)\) \(e\left(\frac{227}{228}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{127}{228}\right)\) \(e\left(\frac{119}{228}\right)\) \(e\left(\frac{47}{114}\right)\) \(e\left(\frac{173}{228}\right)\) \(e\left(\frac{103}{114}\right)\) \(e\left(\frac{59}{114}\right)\)
\(\chi_{9386}(2425,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{38}\right)\) \(e\left(\frac{121}{228}\right)\) \(e\left(\frac{139}{228}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{131}{228}\right)\) \(e\left(\frac{103}{228}\right)\) \(e\left(\frac{79}{114}\right)\) \(e\left(\frac{121}{228}\right)\) \(e\left(\frac{47}{114}\right)\) \(e\left(\frac{7}{114}\right)\)
\(\chi_{9386}(2463,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{38}\right)\) \(e\left(\frac{187}{228}\right)\) \(e\left(\frac{49}{228}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{161}{228}\right)\) \(e\left(\frac{97}{228}\right)\) \(e\left(\frac{91}{114}\right)\) \(e\left(\frac{187}{228}\right)\) \(e\left(\frac{83}{114}\right)\) \(e\left(\frac{73}{114}\right)\)
\(\chi_{9386}(2611,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{38}\right)\) \(e\left(\frac{149}{228}\right)\) \(e\left(\frac{11}{228}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{199}{228}\right)\) \(e\left(\frac{59}{228}\right)\) \(e\left(\frac{53}{114}\right)\) \(e\left(\frac{149}{228}\right)\) \(e\left(\frac{7}{114}\right)\) \(e\left(\frac{35}{114}\right)\)
\(\chi_{9386}(2919,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{38}\right)\) \(e\left(\frac{181}{228}\right)\) \(e\left(\frac{223}{228}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{179}{228}\right)\) \(e\left(\frac{139}{228}\right)\) \(e\left(\frac{7}{114}\right)\) \(e\left(\frac{181}{228}\right)\) \(e\left(\frac{59}{114}\right)\) \(e\left(\frac{67}{114}\right)\)
\(\chi_{9386}(2953,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{38}\right)\) \(e\left(\frac{71}{228}\right)\) \(e\left(\frac{221}{228}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{205}{228}\right)\) \(e\left(\frac{149}{228}\right)\) \(e\left(\frac{101}{114}\right)\) \(e\left(\frac{71}{228}\right)\) \(e\left(\frac{37}{114}\right)\) \(e\left(\frac{71}{114}\right)\)
\(\chi_{9386}(3105,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{38}\right)\) \(e\left(\frac{125}{228}\right)\) \(e\left(\frac{23}{228}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{43}{228}\right)\) \(e\left(\frac{227}{228}\right)\) \(e\left(\frac{59}{114}\right)\) \(e\left(\frac{125}{228}\right)\) \(e\left(\frac{25}{114}\right)\) \(e\left(\frac{11}{114}\right)\)
\(\chi_{9386}(3413,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{38}\right)\) \(e\left(\frac{13}{228}\right)\) \(e\left(\frac{79}{228}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{227}{228}\right)\) \(e\left(\frac{175}{228}\right)\) \(e\left(\frac{49}{114}\right)\) \(e\left(\frac{13}{228}\right)\) \(e\left(\frac{71}{114}\right)\) \(e\left(\frac{13}{114}\right)\)
\(\chi_{9386}(3447,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{38}\right)\) \(e\left(\frac{47}{228}\right)\) \(e\left(\frac{5}{228}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{49}{228}\right)\) \(e\left(\frac{89}{228}\right)\) \(e\left(\frac{107}{114}\right)\) \(e\left(\frac{47}{228}\right)\) \(e\left(\frac{55}{114}\right)\) \(e\left(\frac{47}{114}\right)\)
\(\chi_{9386}(3451,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{38}\right)\) \(e\left(\frac{79}{228}\right)\) \(e\left(\frac{217}{228}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{29}{228}\right)\) \(e\left(\frac{169}{228}\right)\) \(e\left(\frac{61}{114}\right)\) \(e\left(\frac{79}{228}\right)\) \(e\left(\frac{107}{114}\right)\) \(e\left(\frac{79}{114}\right)\)
\(\chi_{9386}(3599,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{38}\right)\) \(e\left(\frac{101}{228}\right)\) \(e\left(\frac{35}{228}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{115}{228}\right)\) \(e\left(\frac{167}{228}\right)\) \(e\left(\frac{65}{114}\right)\) \(e\left(\frac{101}{228}\right)\) \(e\left(\frac{43}{114}\right)\) \(e\left(\frac{101}{114}\right)\)
\(\chi_{9386}(3907,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{38}\right)\) \(e\left(\frac{73}{228}\right)\) \(e\left(\frac{163}{228}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{47}{228}\right)\) \(e\left(\frac{211}{228}\right)\) \(e\left(\frac{91}{114}\right)\) \(e\left(\frac{73}{228}\right)\) \(e\left(\frac{83}{114}\right)\) \(e\left(\frac{73}{114}\right)\)
\(\chi_{9386}(3941,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{38}\right)\) \(e\left(\frac{23}{228}\right)\) \(e\left(\frac{17}{228}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{121}{228}\right)\) \(e\left(\frac{29}{228}\right)\) \(e\left(\frac{113}{114}\right)\) \(e\left(\frac{23}{228}\right)\) \(e\left(\frac{73}{114}\right)\) \(e\left(\frac{23}{114}\right)\)
\(\chi_{9386}(3945,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{38}\right)\) \(e\left(\frac{139}{228}\right)\) \(e\left(\frac{73}{228}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{77}{228}\right)\) \(e\left(\frac{205}{228}\right)\) \(e\left(\frac{103}{114}\right)\) \(e\left(\frac{139}{228}\right)\) \(e\left(\frac{5}{114}\right)\) \(e\left(\frac{25}{114}\right)\)
\(\chi_{9386}(4093,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{38}\right)\) \(e\left(\frac{77}{228}\right)\) \(e\left(\frac{47}{228}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{187}{228}\right)\) \(e\left(\frac{107}{228}\right)\) \(e\left(\frac{71}{114}\right)\) \(e\left(\frac{77}{228}\right)\) \(e\left(\frac{61}{114}\right)\) \(e\left(\frac{77}{114}\right)\)