Properties

Label 9386.3599
Modulus $9386$
Conductor $4693$
Order $228$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9386, base_ring=CyclotomicField(228)) M = H._module chi = DirichletCharacter(H, M([133,182]))
 
Copy content pari:[g,chi] = znchar(Mod(3599,9386))
 

Basic properties

Modulus: \(9386\)
Conductor: \(4693\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(228\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4693}(3599,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 9386.dc

\(\chi_{9386}(141,\cdot)\) \(\chi_{9386}(449,\cdot)\) \(\chi_{9386}(483,\cdot)\) \(\chi_{9386}(487,\cdot)\) \(\chi_{9386}(635,\cdot)\) \(\chi_{9386}(943,\cdot)\) \(\chi_{9386}(977,\cdot)\) \(\chi_{9386}(981,\cdot)\) \(\chi_{9386}(1129,\cdot)\) \(\chi_{9386}(1437,\cdot)\) \(\chi_{9386}(1471,\cdot)\) \(\chi_{9386}(1475,\cdot)\) \(\chi_{9386}(1623,\cdot)\) \(\chi_{9386}(1931,\cdot)\) \(\chi_{9386}(1965,\cdot)\) \(\chi_{9386}(1969,\cdot)\) \(\chi_{9386}(2117,\cdot)\) \(\chi_{9386}(2425,\cdot)\) \(\chi_{9386}(2463,\cdot)\) \(\chi_{9386}(2611,\cdot)\) \(\chi_{9386}(2919,\cdot)\) \(\chi_{9386}(2953,\cdot)\) \(\chi_{9386}(3105,\cdot)\) \(\chi_{9386}(3413,\cdot)\) \(\chi_{9386}(3447,\cdot)\) \(\chi_{9386}(3451,\cdot)\) \(\chi_{9386}(3599,\cdot)\) \(\chi_{9386}(3907,\cdot)\) \(\chi_{9386}(3941,\cdot)\) \(\chi_{9386}(3945,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{228})$
Fixed field: Number field defined by a degree 228 polynomial (not computed)

Values on generators

\((1445,3251)\) → \((e\left(\frac{7}{12}\right),e\left(\frac{91}{114}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(21\)\(23\)\(25\)
\( \chi_{ 9386 }(3599, a) \) \(1\)\(1\)\(e\left(\frac{11}{38}\right)\)\(e\left(\frac{101}{228}\right)\)\(e\left(\frac{35}{228}\right)\)\(e\left(\frac{11}{19}\right)\)\(e\left(\frac{115}{228}\right)\)\(e\left(\frac{167}{228}\right)\)\(e\left(\frac{65}{114}\right)\)\(e\left(\frac{101}{228}\right)\)\(e\left(\frac{43}{114}\right)\)\(e\left(\frac{101}{114}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 9386 }(3599,a) \;\) at \(\;a = \) e.g. 2