Properties

Label 9386.co
Modulus $9386$
Conductor $4693$
Order $114$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9386, base_ring=CyclotomicField(114)) M = H._module chi = DirichletCharacter(H, M([57,98])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(311,9386)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(9386\)
Conductor: \(4693\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(114\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 4693.cl
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{57})$
Fixed field: Number field defined by a degree 114 polynomial (not computed)

First 31 of 36 characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(15\) \(17\) \(21\) \(23\) \(25\)
\(\chi_{9386}(311,\cdot)\) \(1\) \(1\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{107}{114}\right)\) \(e\left(\frac{17}{38}\right)\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{7}{38}\right)\) \(e\left(\frac{49}{114}\right)\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{107}{114}\right)\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{50}{57}\right)\)
\(\chi_{9386}(467,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{55}{114}\right)\) \(e\left(\frac{13}{38}\right)\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{21}{38}\right)\) \(e\left(\frac{71}{114}\right)\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{55}{114}\right)\) \(e\left(\frac{49}{57}\right)\) \(e\left(\frac{55}{57}\right)\)
\(\chi_{9386}(805,\cdot)\) \(1\) \(1\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{77}{114}\right)\) \(e\left(\frac{3}{38}\right)\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{37}{38}\right)\) \(e\left(\frac{31}{114}\right)\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{77}{114}\right)\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{20}{57}\right)\)
\(\chi_{9386}(961,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{67}{114}\right)\) \(e\left(\frac{11}{38}\right)\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{9}{38}\right)\) \(e\left(\frac{101}{114}\right)\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{67}{114}\right)\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{10}{57}\right)\)
\(\chi_{9386}(1299,\cdot)\) \(1\) \(1\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{47}{114}\right)\) \(e\left(\frac{27}{38}\right)\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{29}{38}\right)\) \(e\left(\frac{13}{114}\right)\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{47}{114}\right)\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{47}{57}\right)\)
\(\chi_{9386}(1455,\cdot)\) \(1\) \(1\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{79}{114}\right)\) \(e\left(\frac{9}{38}\right)\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{35}{38}\right)\) \(e\left(\frac{17}{114}\right)\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{79}{114}\right)\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{22}{57}\right)\)
\(\chi_{9386}(1793,\cdot)\) \(1\) \(1\) \(e\left(\frac{46}{57}\right)\) \(e\left(\frac{17}{114}\right)\) \(e\left(\frac{13}{38}\right)\) \(e\left(\frac{35}{57}\right)\) \(e\left(\frac{21}{38}\right)\) \(e\left(\frac{109}{114}\right)\) \(e\left(\frac{10}{57}\right)\) \(e\left(\frac{17}{114}\right)\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{17}{57}\right)\)
\(\chi_{9386}(1949,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{57}\right)\) \(e\left(\frac{91}{114}\right)\) \(e\left(\frac{7}{38}\right)\) \(e\left(\frac{13}{57}\right)\) \(e\left(\frac{23}{38}\right)\) \(e\left(\frac{47}{114}\right)\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{91}{114}\right)\) \(e\left(\frac{22}{57}\right)\) \(e\left(\frac{34}{57}\right)\)
\(\chi_{9386}(2287,\cdot)\) \(1\) \(1\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{101}{114}\right)\) \(e\left(\frac{37}{38}\right)\) \(e\left(\frac{47}{57}\right)\) \(e\left(\frac{13}{38}\right)\) \(e\left(\frac{91}{114}\right)\) \(e\left(\frac{46}{57}\right)\) \(e\left(\frac{101}{114}\right)\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{44}{57}\right)\)
\(\chi_{9386}(2443,\cdot)\) \(1\) \(1\) \(e\left(\frac{44}{57}\right)\) \(e\left(\frac{103}{114}\right)\) \(e\left(\frac{5}{38}\right)\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{11}{38}\right)\) \(e\left(\frac{77}{114}\right)\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{103}{114}\right)\) \(e\left(\frac{13}{57}\right)\) \(e\left(\frac{46}{57}\right)\)
\(\chi_{9386}(2781,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{71}{114}\right)\) \(e\left(\frac{23}{38}\right)\) \(e\left(\frac{2}{57}\right)\) \(e\left(\frac{5}{38}\right)\) \(e\left(\frac{73}{114}\right)\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{71}{114}\right)\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{14}{57}\right)\)
\(\chi_{9386}(2937,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{1}{114}\right)\) \(e\left(\frac{3}{38}\right)\) \(e\left(\frac{49}{57}\right)\) \(e\left(\frac{37}{38}\right)\) \(e\left(\frac{107}{114}\right)\) \(e\left(\frac{14}{57}\right)\) \(e\left(\frac{1}{114}\right)\) \(e\left(\frac{4}{57}\right)\) \(e\left(\frac{1}{57}\right)\)
\(\chi_{9386}(3275,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{41}{114}\right)\) \(e\left(\frac{9}{38}\right)\) \(e\left(\frac{14}{57}\right)\) \(e\left(\frac{35}{38}\right)\) \(e\left(\frac{55}{114}\right)\) \(e\left(\frac{4}{57}\right)\) \(e\left(\frac{41}{114}\right)\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{41}{57}\right)\)
\(\chi_{9386}(3431,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{13}{114}\right)\) \(e\left(\frac{1}{38}\right)\) \(e\left(\frac{10}{57}\right)\) \(e\left(\frac{25}{38}\right)\) \(e\left(\frac{23}{114}\right)\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{13}{114}\right)\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{13}{57}\right)\)
\(\chi_{9386}(3769,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{57}\right)\) \(e\left(\frac{11}{114}\right)\) \(e\left(\frac{33}{38}\right)\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{27}{38}\right)\) \(e\left(\frac{37}{114}\right)\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{11}{114}\right)\) \(e\left(\frac{44}{57}\right)\) \(e\left(\frac{11}{57}\right)\)
\(\chi_{9386}(3925,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{57}\right)\) \(e\left(\frac{25}{114}\right)\) \(e\left(\frac{37}{38}\right)\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{13}{38}\right)\) \(e\left(\frac{53}{114}\right)\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{25}{114}\right)\) \(e\left(\frac{43}{57}\right)\) \(e\left(\frac{25}{57}\right)\)
\(\chi_{9386}(4419,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{37}{114}\right)\) \(e\left(\frac{35}{38}\right)\) \(e\left(\frac{46}{57}\right)\) \(e\left(\frac{1}{38}\right)\) \(e\left(\frac{83}{114}\right)\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{37}{114}\right)\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{37}{57}\right)\)
\(\chi_{9386}(4757,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{65}{114}\right)\) \(e\left(\frac{5}{38}\right)\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{11}{38}\right)\) \(e\left(\frac{1}{114}\right)\) \(e\left(\frac{55}{57}\right)\) \(e\left(\frac{65}{114}\right)\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{8}{57}\right)\)
\(\chi_{9386}(4913,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{49}{114}\right)\) \(e\left(\frac{33}{38}\right)\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{27}{38}\right)\) \(e\left(\frac{113}{114}\right)\) \(e\left(\frac{2}{57}\right)\) \(e\left(\frac{49}{114}\right)\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{49}{57}\right)\)
\(\chi_{9386}(5251,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{35}{114}\right)\) \(e\left(\frac{29}{38}\right)\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{3}{38}\right)\) \(e\left(\frac{97}{114}\right)\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{35}{114}\right)\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{35}{57}\right)\)
\(\chi_{9386}(5407,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{57}\right)\) \(e\left(\frac{61}{114}\right)\) \(e\left(\frac{31}{38}\right)\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{15}{38}\right)\) \(e\left(\frac{29}{114}\right)\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{61}{114}\right)\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{4}{57}\right)\)
\(\chi_{9386}(5745,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{57}\right)\) \(e\left(\frac{5}{114}\right)\) \(e\left(\frac{15}{38}\right)\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{33}{38}\right)\) \(e\left(\frac{79}{114}\right)\) \(e\left(\frac{13}{57}\right)\) \(e\left(\frac{5}{114}\right)\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{5}{57}\right)\)
\(\chi_{9386}(5901,\cdot)\) \(1\) \(1\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{73}{114}\right)\) \(e\left(\frac{29}{38}\right)\) \(e\left(\frac{43}{57}\right)\) \(e\left(\frac{3}{38}\right)\) \(e\left(\frac{59}{114}\right)\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{73}{114}\right)\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{16}{57}\right)\)
\(\chi_{9386}(6239,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{57}\right)\) \(e\left(\frac{89}{114}\right)\) \(e\left(\frac{1}{38}\right)\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{25}{38}\right)\) \(e\left(\frac{61}{114}\right)\) \(e\left(\frac{49}{57}\right)\) \(e\left(\frac{89}{114}\right)\) \(e\left(\frac{14}{57}\right)\) \(e\left(\frac{32}{57}\right)\)
\(\chi_{9386}(6395,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{57}\right)\) \(e\left(\frac{85}{114}\right)\) \(e\left(\frac{27}{38}\right)\) \(e\left(\frac{4}{57}\right)\) \(e\left(\frac{29}{38}\right)\) \(e\left(\frac{89}{114}\right)\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{85}{114}\right)\) \(e\left(\frac{55}{57}\right)\) \(e\left(\frac{28}{57}\right)\)
\(\chi_{9386}(6733,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{57}\right)\) \(e\left(\frac{59}{114}\right)\) \(e\left(\frac{25}{38}\right)\) \(e\left(\frac{41}{57}\right)\) \(e\left(\frac{17}{38}\right)\) \(e\left(\frac{43}{114}\right)\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{59}{114}\right)\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{2}{57}\right)\)
\(\chi_{9386}(6889,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{97}{114}\right)\) \(e\left(\frac{25}{38}\right)\) \(e\left(\frac{22}{57}\right)\) \(e\left(\frac{17}{38}\right)\) \(e\left(\frac{5}{114}\right)\) \(e\left(\frac{47}{57}\right)\) \(e\left(\frac{97}{114}\right)\) \(e\left(\frac{46}{57}\right)\) \(e\left(\frac{40}{57}\right)\)
\(\chi_{9386}(7227,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{57}\right)\) \(e\left(\frac{29}{114}\right)\) \(e\left(\frac{11}{38}\right)\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{9}{38}\right)\) \(e\left(\frac{25}{114}\right)\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{29}{114}\right)\) \(e\left(\frac{2}{57}\right)\) \(e\left(\frac{29}{57}\right)\)
\(\chi_{9386}(7383,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{109}{114}\right)\) \(e\left(\frac{23}{38}\right)\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{5}{38}\right)\) \(e\left(\frac{35}{114}\right)\) \(e\left(\frac{44}{57}\right)\) \(e\left(\frac{109}{114}\right)\) \(e\left(\frac{37}{57}\right)\) \(e\left(\frac{52}{57}\right)\)
\(\chi_{9386}(7721,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{57}\right)\) \(e\left(\frac{113}{114}\right)\) \(e\left(\frac{35}{38}\right)\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{1}{38}\right)\) \(e\left(\frac{7}{114}\right)\) \(e\left(\frac{43}{57}\right)\) \(e\left(\frac{113}{114}\right)\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{56}{57}\right)\)
\(\chi_{9386}(7877,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{7}{114}\right)\) \(e\left(\frac{21}{38}\right)\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{31}{38}\right)\) \(e\left(\frac{65}{114}\right)\) \(e\left(\frac{41}{57}\right)\) \(e\left(\frac{7}{114}\right)\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{7}{57}\right)\)