Properties

Label 9386.6889
Modulus $9386$
Conductor $4693$
Order $114$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9386, base_ring=CyclotomicField(114)) M = H._module chi = DirichletCharacter(H, M([57,10]))
 
Copy content pari:[g,chi] = znchar(Mod(6889,9386))
 

Basic properties

Modulus: \(9386\)
Conductor: \(4693\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(114\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4693}(2196,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 9386.co

\(\chi_{9386}(311,\cdot)\) \(\chi_{9386}(467,\cdot)\) \(\chi_{9386}(805,\cdot)\) \(\chi_{9386}(961,\cdot)\) \(\chi_{9386}(1299,\cdot)\) \(\chi_{9386}(1455,\cdot)\) \(\chi_{9386}(1793,\cdot)\) \(\chi_{9386}(1949,\cdot)\) \(\chi_{9386}(2287,\cdot)\) \(\chi_{9386}(2443,\cdot)\) \(\chi_{9386}(2781,\cdot)\) \(\chi_{9386}(2937,\cdot)\) \(\chi_{9386}(3275,\cdot)\) \(\chi_{9386}(3431,\cdot)\) \(\chi_{9386}(3769,\cdot)\) \(\chi_{9386}(3925,\cdot)\) \(\chi_{9386}(4419,\cdot)\) \(\chi_{9386}(4757,\cdot)\) \(\chi_{9386}(4913,\cdot)\) \(\chi_{9386}(5251,\cdot)\) \(\chi_{9386}(5407,\cdot)\) \(\chi_{9386}(5745,\cdot)\) \(\chi_{9386}(5901,\cdot)\) \(\chi_{9386}(6239,\cdot)\) \(\chi_{9386}(6395,\cdot)\) \(\chi_{9386}(6733,\cdot)\) \(\chi_{9386}(6889,\cdot)\) \(\chi_{9386}(7227,\cdot)\) \(\chi_{9386}(7383,\cdot)\) \(\chi_{9386}(7721,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{57})$
Fixed field: Number field defined by a degree 114 polynomial (not computed)

Values on generators

\((1445,3251)\) → \((-1,e\left(\frac{5}{57}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(21\)\(23\)\(25\)
\( \chi_{ 9386 }(6889, a) \) \(1\)\(1\)\(e\left(\frac{11}{57}\right)\)\(e\left(\frac{97}{114}\right)\)\(e\left(\frac{25}{38}\right)\)\(e\left(\frac{22}{57}\right)\)\(e\left(\frac{17}{38}\right)\)\(e\left(\frac{5}{114}\right)\)\(e\left(\frac{47}{57}\right)\)\(e\left(\frac{97}{114}\right)\)\(e\left(\frac{46}{57}\right)\)\(e\left(\frac{40}{57}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 9386 }(6889,a) \;\) at \(\;a = \) e.g. 2