\(\chi_{9386}(1029,\cdot)\)
|
\(1\) | \(1\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(i\) | \(e\left(\frac{4}{9}\right)\) | \(i\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) |
\(\chi_{9386}(1345,\cdot)\)
|
\(1\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(i\) | \(e\left(\frac{2}{9}\right)\) | \(i\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) |
\(\chi_{9386}(2789,\cdot)\)
|
\(1\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(-i\) | \(e\left(\frac{2}{9}\right)\) | \(-i\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) |
\(\chi_{9386}(3187,\cdot)\)
|
\(1\) | \(1\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(i\) | \(e\left(\frac{7}{9}\right)\) | \(i\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) |
\(\chi_{9386}(3365,\cdot)\)
|
\(1\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(-i\) | \(e\left(\frac{1}{9}\right)\) | \(-i\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) |
\(\chi_{9386}(3737,\cdot)\)
|
\(1\) | \(1\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(i\) | \(e\left(\frac{5}{9}\right)\) | \(i\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) |
\(\chi_{9386}(4639,\cdot)\)
|
\(1\) | \(1\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(-i\) | \(e\left(\frac{4}{9}\right)\) | \(-i\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) |
\(\chi_{9386}(5181,\cdot)\)
|
\(1\) | \(1\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(-i\) | \(e\left(\frac{5}{9}\right)\) | \(-i\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) |
\(\chi_{9386}(6797,\cdot)\)
|
\(1\) | \(1\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(-i\) | \(e\left(\frac{7}{9}\right)\) | \(-i\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) |
\(\chi_{9386}(6831,\cdot)\)
|
\(1\) | \(1\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(i\) | \(e\left(\frac{8}{9}\right)\) | \(i\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) |
\(\chi_{9386}(8275,\cdot)\)
|
\(1\) | \(1\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(-i\) | \(e\left(\frac{8}{9}\right)\) | \(-i\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) |
\(\chi_{9386}(9141,\cdot)\)
|
\(1\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(i\) | \(e\left(\frac{1}{9}\right)\) | \(i\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) |