Properties

Label 9386.bu
Modulus $9386$
Conductor $247$
Order $36$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9386, base_ring=CyclotomicField(36)) M = H._module chi = DirichletCharacter(H, M([3,26])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(1029,9386)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(9386\)
Conductor: \(247\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(36\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 247.br
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: 36.36.172883305869849387893002611628480390541620325819249742650713178237814353492521813.2

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(15\) \(17\) \(21\) \(23\) \(25\)
\(\chi_{9386}(1029,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{11}{36}\right)\) \(i\) \(e\left(\frac{4}{9}\right)\) \(i\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{9386}(1345,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{19}{36}\right)\) \(i\) \(e\left(\frac{2}{9}\right)\) \(i\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{9386}(2789,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{36}\right)\) \(-i\) \(e\left(\frac{2}{9}\right)\) \(-i\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{9386}(3187,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{35}{36}\right)\) \(i\) \(e\left(\frac{7}{9}\right)\) \(i\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{9386}(3365,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{36}\right)\) \(-i\) \(e\left(\frac{1}{9}\right)\) \(-i\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{9386}(3737,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{36}\right)\) \(i\) \(e\left(\frac{5}{9}\right)\) \(i\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{9386}(4639,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{29}{36}\right)\) \(-i\) \(e\left(\frac{4}{9}\right)\) \(-i\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{9386}(5181,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{25}{36}\right)\) \(-i\) \(e\left(\frac{5}{9}\right)\) \(-i\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{9386}(6797,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{17}{36}\right)\) \(-i\) \(e\left(\frac{7}{9}\right)\) \(-i\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{9386}(6831,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{31}{36}\right)\) \(i\) \(e\left(\frac{8}{9}\right)\) \(i\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{9386}(8275,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{13}{36}\right)\) \(-i\) \(e\left(\frac{8}{9}\right)\) \(-i\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{9386}(9141,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{23}{36}\right)\) \(i\) \(e\left(\frac{1}{9}\right)\) \(i\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{18}\right)\)