Properties

Label 931.681
Modulus $931$
Conductor $931$
Order $63$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(931, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([24,28]))
 
Copy content pari:[g,chi] = znchar(Mod(681,931))
 

Basic properties

Modulus: \(931\)
Conductor: \(931\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(63\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 931.ca

\(\chi_{931}(4,\cdot)\) \(\chi_{931}(16,\cdot)\) \(\chi_{931}(25,\cdot)\) \(\chi_{931}(93,\cdot)\) \(\chi_{931}(100,\cdot)\) \(\chi_{931}(123,\cdot)\) \(\chi_{931}(137,\cdot)\) \(\chi_{931}(149,\cdot)\) \(\chi_{931}(158,\cdot)\) \(\chi_{931}(233,\cdot)\) \(\chi_{931}(256,\cdot)\) \(\chi_{931}(270,\cdot)\) \(\chi_{931}(282,\cdot)\) \(\chi_{931}(291,\cdot)\) \(\chi_{931}(359,\cdot)\) \(\chi_{931}(366,\cdot)\) \(\chi_{931}(389,\cdot)\) \(\chi_{931}(403,\cdot)\) \(\chi_{931}(415,\cdot)\) \(\chi_{931}(424,\cdot)\) \(\chi_{931}(492,\cdot)\) \(\chi_{931}(499,\cdot)\) \(\chi_{931}(522,\cdot)\) \(\chi_{931}(536,\cdot)\) \(\chi_{931}(548,\cdot)\) \(\chi_{931}(625,\cdot)\) \(\chi_{931}(632,\cdot)\) \(\chi_{931}(669,\cdot)\) \(\chi_{931}(681,\cdot)\) \(\chi_{931}(690,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 63 polynomial

Values on generators

\((248,344)\) → \((e\left(\frac{4}{21}\right),e\left(\frac{2}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(11\)\(12\)
\( \chi_{ 931 }(681, a) \) \(1\)\(1\)\(e\left(\frac{11}{63}\right)\)\(e\left(\frac{5}{63}\right)\)\(e\left(\frac{22}{63}\right)\)\(e\left(\frac{5}{63}\right)\)\(e\left(\frac{16}{63}\right)\)\(e\left(\frac{11}{21}\right)\)\(e\left(\frac{10}{63}\right)\)\(e\left(\frac{16}{63}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{3}{7}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 931 }(681,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 931 }(681,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 931 }(681,·),\chi_{ 931 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 931 }(681,·)) \;\) at \(\; a,b = \) e.g. 1,2