sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(931, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([30,14]))
pari:[g,chi] = znchar(Mod(4,931))
| Modulus: | \(931\) | |
| Conductor: | \(931\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(63\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{931}(4,\cdot)\)
\(\chi_{931}(16,\cdot)\)
\(\chi_{931}(25,\cdot)\)
\(\chi_{931}(93,\cdot)\)
\(\chi_{931}(100,\cdot)\)
\(\chi_{931}(123,\cdot)\)
\(\chi_{931}(137,\cdot)\)
\(\chi_{931}(149,\cdot)\)
\(\chi_{931}(158,\cdot)\)
\(\chi_{931}(233,\cdot)\)
\(\chi_{931}(256,\cdot)\)
\(\chi_{931}(270,\cdot)\)
\(\chi_{931}(282,\cdot)\)
\(\chi_{931}(291,\cdot)\)
\(\chi_{931}(359,\cdot)\)
\(\chi_{931}(366,\cdot)\)
\(\chi_{931}(389,\cdot)\)
\(\chi_{931}(403,\cdot)\)
\(\chi_{931}(415,\cdot)\)
\(\chi_{931}(424,\cdot)\)
\(\chi_{931}(492,\cdot)\)
\(\chi_{931}(499,\cdot)\)
\(\chi_{931}(522,\cdot)\)
\(\chi_{931}(536,\cdot)\)
\(\chi_{931}(548,\cdot)\)
\(\chi_{931}(625,\cdot)\)
\(\chi_{931}(632,\cdot)\)
\(\chi_{931}(669,\cdot)\)
\(\chi_{931}(681,\cdot)\)
\(\chi_{931}(690,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((248,344)\) → \((e\left(\frac{5}{21}\right),e\left(\frac{1}{9}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
| \( \chi_{ 931 }(4, a) \) |
\(1\) | \(1\) | \(e\left(\frac{19}{63}\right)\) | \(e\left(\frac{43}{63}\right)\) | \(e\left(\frac{38}{63}\right)\) | \(e\left(\frac{43}{63}\right)\) | \(e\left(\frac{62}{63}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{23}{63}\right)\) | \(e\left(\frac{62}{63}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)