sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(925, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([27,7]))
pari:[g,chi] = znchar(Mod(868,925))
\(\chi_{925}(32,\cdot)\)
\(\chi_{925}(57,\cdot)\)
\(\chi_{925}(93,\cdot)\)
\(\chi_{925}(318,\cdot)\)
\(\chi_{925}(357,\cdot)\)
\(\chi_{925}(368,\cdot)\)
\(\chi_{925}(557,\cdot)\)
\(\chi_{925}(568,\cdot)\)
\(\chi_{925}(607,\cdot)\)
\(\chi_{925}(832,\cdot)\)
\(\chi_{925}(868,\cdot)\)
\(\chi_{925}(893,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((852,76)\) → \((-i,e\left(\frac{7}{36}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
| \( \chi_{ 925 }(868, a) \) |
\(1\) | \(1\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(i\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{7}{18}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)